机器学习与数据挖掘网上资源搜罗——良心推荐

2024-05-07 17:48

本文主要是介绍机器学习与数据挖掘网上资源搜罗——良心推荐,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面我曾经发帖推荐过网上的一些做“图像处理和计算机视觉的”有料博客资源,原帖地址

图像处理与机器视觉网络资源收罗——倾心大放送

http://blog.csdn.net/baimafujinji/article/details/32332079


做机器学习和数据挖掘方面的研究和开发,常会在线搜索一些资源,日积月累便挖出了一堆比较牛的博主,特别说明:做这个方向的人很多,牛人也很多,但是这些资源大部分主要突出实用主义,相关博主也并不一定是这个领域中的泰山北斗(至少大部分都不是学校里的教授),但是他们的空间里真的有料,可以学到很多。不断更新中,但大浪淘沙,我只保留最值得推荐的。


1、首先,是豆瓣上的数据铺子主页

http://site.douban.com/182577/


因为我个人多是用R来做数据挖掘和分析,所以主页菌的内容很对我的胃口。这个主页里有大量用R做数据挖掘的内容。我也向博主偷师了很多。尽管主页已经停止更新内容了,但是现有的部分(其实文章量很大)已经可以令后来者学到很多了。


2、JerryLead在博客园上的主页

http://www.cnblogs.com/jerrylead/


如果你想了解数据挖掘算法的原理,而且是从数学层面上做到“知其然,更知其所以然”的深度理解,这个博客(以及下面的博客)理应是你必看的内容。这个主页的特点是对很多算法都做了详细的数学推导。博主应该是在中科院读博的,尽管博客似乎也停更很久了,但是很多经典的东西其实永不过时。SVM、EM等系列文章介绍的很到位,尤其推荐。


3、pluskid的主页

http://blog.pluskid.org/?page_id=683


博主是浙大本硕,后来貌似应该去了美国读博。这个博客跟JerryLead的很类似,大量数学推导,让你从本质上认识和理解很多晦涩的数据挖掘算法。网络上很多人推崇CSDN上的July,尤其是那篇SVM三重境界。殊不知,July的三重境界也不过是JerryLead和pluskid左一段右一段的移花接木之作罢了。最开始我看这几篇文章的时候,就发现内容像极了,尤其是pluskid画的图基本原模原样地出现在了July的文章中。后来在知乎上看了帖子http://www.zhihu.com/question/24957182,差不多也就明白里面的事了。总之,希望大家还是能够尊重原创吧。July的博客也可以看,毕竟超千万的访问量,他东搜西凑的不断整理没有功劳也有苦劳,大家可权当一个合集来看了。


4、龙心尘&寒小阳 的主页

http://blog.csdn.net/longxinchen_ml/


数据挖掘和机器学习博客中的新生力量,看了几篇博文,感觉实力不俗。神经网络和深度学习部分的内容比较推荐。


其他公共资源

R、Weka、Python和Matlab都是用来做数据挖掘的利器(甚至SPSS、STATA、SAS也能用来完成一些数据挖掘任务)。因此,事实上这些软件或语言的公共主页或论坛上也包含有大量不错的内容(包括一些程序代码和应用实例)。


最后,网上还有很多关于机器学习和数据挖掘的公开课。如果你想一点一点系统的学习,那么这些资源你都不应该错过。我主要推荐两个:

一个是斯坦福的公开课——机器学习 ,由Andrew Ng主讲。我相信JerryLead 的EM博文就参考了Andrew Ng的授课内容。这个课程是英文授课,国内网站的视频上还配了中文字幕,如果你有毅力和决心,那么啃这个课程是很不错的选择。国内可以访问网易公开课来学习,地址如下

http://open.163.com/special/opencourse/machinelearning.html


如果你还是觉得听英语很别扭,那么由台湾大学林轩田教授录制的中文Coursera课程(也就是传说中的MOOC)——机器学习系列就是一个绝佳的资源。该课程分上下两个部分,对于初学者可以学习——“机器学习基石”课程

http://c.open.163.com/coursera/courseIntro.htm?cid=938

听这个名字你也能知道上面的课程讲的是基础。如果你想学习进阶内容(当然,前提是基石部分的知识你已经统统掌握了),那么你便可以选择林教授的另外一门MOOC课程——“机器学习技法”课程

http://c.open.163.com/coursera/courseIntro.htm?cid=1664


最后,感谢上述资源提供者的无私奉献。也衷心希望各位读者学有所得,学有所成!

这篇关于机器学习与数据挖掘网上资源搜罗——良心推荐的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967966

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类

Java子线程无法获取Attributes的解决方法(最新推荐)

《Java子线程无法获取Attributes的解决方法(最新推荐)》在Java多线程编程中,子线程无法直接获取主线程设置的Attributes是一个常见问题,本文探讨了这一问题的原因,并提供了两种解决... 目录一、问题原因二、解决方案1. 直接传递数据2. 使用ThreadLocal(适用于线程独立数据)

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]