易用的深度学习框架Keras简介

2024-05-07 16:48

本文主要是介绍易用的深度学习框架Keras简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

致读者:本文写于keras开发初期,目前keras已经迭代到1.0版本,很多API都发生了较大的变化,所以本文的粘贴的一些代码可能已经过时,在我的github上有更新后的代码,读者需要的话可以看github上的代码:https://github.com/wepe/MachineLearning

之前我一直在使用Theano,前面五篇Deeplearning相关的文章也是学习Theano的一些笔记,当时已经觉得Theano用起来略显麻烦,有时想实现一个新的结构,就要花很多时间去编程,所以想过将代码模块化,方便重复使用,但因为实在太忙没有时间去做。最近发现了一个叫做Keras的框架,跟我的想法不谋而合,用起来特别简单,适合快速开发。

1. Keras简介

Keras是基于Theano的一个深度学习框架,它的设计参考了Torch,用Python语言编写,是一个高度模块化的神经网络库,支持GPU和CPU。使用文档在这:http://keras.io/,这个框架貌似是刚刚火起来的,使用上的问题可以到github提issue:https://github.com/fchollet/keras 

下面简单介绍一下怎么使用Keras,以Mnist数据库为例,编写一个CNN网络结构,你将会发现特别简单。

2. Keras里的模块介绍

  • Optimizers

    顾名思义,Optimizers包含了一些优化的方法,比如最基本的随机梯度下降SGD,另外还有Adagrad、Adadelta、RMSprop、Adam,一些新的方法以后也会被不断添加进来。

    keras.optimizers.SGD(lr=0.01, momentum=0.9, decay=0.9, nesterov=False)

    上面的代码是SGD的使用方法,lr表示学习速率,momentum表示动量项,decay是学习速率的衰减系数(每个epoch衰减一次),Nesterov的值是False或者True,表示使不使用Nesterov momentum。其他的请参考文档。

  • Objectives

    这是目标函数模块,keras提供了mean_squared_error,mean_absolute_error
    ,squared_hinge,hinge,binary_crossentropy,categorical_crossentropy这几种目标函数。

    这里binary_crossentropy 和 categorical_crossentropy也就是常说的logloss.

  • Activations

    这是激活函数模块,keras提供了linear、sigmoid、hard_sigmoid、tanh、softplus、relu、softplus,另外softmax也放在Activations模块里(我觉得放在layers模块里更合理些)。此外,像LeakyReLU和PReLU这种比较新的激活函数,keras在keras.layers.advanced_activations模块里提供。

  • Initializations

    这是参数初始化模块,在添加layer的时候调用init进行初始化。keras提供了uniform、lecun_uniform、normal、orthogonal、zero、glorot_normal、he_normal这几种。

  • layers

    layers模块包含了core、convolutional、recurrent、advanced_activations、normalization、embeddings这几种layer。

    其中core里面包含了flatten(CNN的全连接层之前需要把二维特征图flatten成为一维的)、reshape(CNN输入时将一维的向量弄成二维的)、dense(就是隐藏层,dense是稠密的意思),还有其他的就不介绍了。convolutional层基本就是Theano的Convolution2D的封装。

  • Preprocessing

    这是预处理模块,包括序列数据的处理,文本数据的处理,图像数据的处理。重点看一下图像数据的处理,keras提供了ImageDataGenerator函数,实现data augmentation,数据集扩增,对图像做一些弹性变换,比如水平翻转,垂直翻转,旋转等。

  • Models

    这是最主要的模块,模型。上面定义了各种基本组件,model是将它们组合起来,下面通过一个实例来说明。

3.一个实例:用CNN分类Mnist

  • 数据下载

    Mnist数据在其官网上有提供,但是不是图像格式的,因为我们通常都是直接处理图像,为了以后程序能复用,我把它弄成图像格式的,这里可以下载:http://pan.baidu.com/s/1qCdS6,共有42000张图片。

  • 读取图片数据

    keras要求输入的数据格式是numpy.array类型(numpy是一个python的数值计算的库),所以需要写一个脚本来读入mnist图像,保存为一个四维的data,还有一个一维的label,代码:

#coding:utf-8
"""
Author:wepon
Source:https://github.com/wepe
file:data.py
"""import os
from PIL import Image
import numpy as np#读取文件夹mnist下的42000张图片,图片为灰度图,所以为1通道,
#如果是将彩色图作为输入,则将1替换为3,并且data[i,:,:,:] = arr改为data[i,:,:,:] = [arr[:,:,0],arr[:,:,1],arr[:,:,2]]
def load_data():data = np.empty((42000,1,28,28),dtype="float32")label = np.empty((42000,),dtype="uint8")imgs = os.listdir("./mnist")num = len(imgs)for i in range(num):img = Image.open("./mnist/"+imgs[i])arr = np.asarray(img,dtype="float32")data[i,:,:,:] = arrlabel[i] = int(imgs[i].split('.')[0])return data,label
  • 构建CNN,训练

    短短二十多行代码,构建一个三个卷积层的CNN,直接读下面的代码吧,有注释,很容易读懂:

#导入各种用到的模块组件
from __future__ import absolute_import
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.advanced_activations import PReLU
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD, Adadelta, Adagrad
from keras.utils import np_utils, generic_utils
from six.moves import range
from data import load_data#加载数据
data, label = load_data()
print(data.shape[0], ' samples')#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数
label = np_utils.to_categorical(label, 10)###############
#开始建立CNN模型
################生成一个model
model = Sequential()#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里说明:http://deeplearning.net/software/theano/library/tensor/nnet/conv.html#theano.tensor.nnet.conv.conv2d
#激活函数用tanh
#你还可以在model.add(Activation('tanh'))后加上dropout的技巧: model.add(Dropout(0.5))
model.add(Convolution2D(4, 1, 5, 5, border_mode='valid')) 
model.add(Activation('tanh'))#第二个卷积层,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(8,4, 3, 3, border_mode='valid'))
model.add(Activation('tanh'))
model.add(MaxPooling2D(poolsize=(2, 2)))#第三个卷积层,16个卷积核,每个卷积核大小3*3
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(16, 8, 3, 3, border_mode='valid')) 
model.add(Activation('tanh'))
model.add(MaxPooling2D(poolsize=(2, 2)))#全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全连接有128个神经元节点,初始化方式为normal
model.add(Flatten())
model.add(Dense(16*4*4, 128, init='normal'))
model.add(Activation('tanh'))#Softmax分类,输出是10类别
model.add(Dense(128, 10, init='normal'))
model.add(Activation('softmax'))#############
#开始训练模型
##############
#使用SGD + momentum
#model.compile里的参数loss就是损失函数(目标函数)
sgd = SGD(l2=0.0,lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,class_mode="categorical")#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.
#数据经过随机打乱shuffle=True。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
model.fit(data, label, batch_size=100,nb_epoch=10,shuffle=True,verbose=1,show_accuracy=True,validation_split=0.2)
  • 代码使用与结果

代码放在我github的机器学习仓库里:https://github.com/wepe/MachineLearning,非github用户直接点右下的DownloadZip。

在/DeepLearning Tutorials/keras_usage目录下包括data.py,cnn.py两份代码,下载Mnist数据后解压到该目录下,运行cnn.py这份文件即可。

结果如下所示,在Epoch 9达到了0.98的训练集识别率和0.97的验证集识别率:

这里写图片描述

这篇关于易用的深度学习框架Keras简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967865

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Python结合Flask框架构建一个简易的远程控制系统

《Python结合Flask框架构建一个简易的远程控制系统》这篇文章主要为大家详细介绍了如何使用Python与Flask框架构建一个简易的远程控制系统,能够远程执行操作命令(如关机、重启、锁屏等),还... 目录1.概述2.功能使用系统命令执行实时屏幕监控3. BUG修复过程1. Authorization