使用pytorch构建GAN网络并实现FID评估

2024-05-07 14:20

本文主要是介绍使用pytorch构建GAN网络并实现FID评估,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇文章介绍了GAN的详细理论,只要掌握了GAN,对于后面各种GAN的变形都变得很简单,基础打好了,盖大楼自然就容易了。既然有了理论,实践也是必不可少的,这篇文章将使用mnist数据集来实现简单的GAN网络,并附带使用FID来评估生成质量。

1. FID评估方法

1.1 计算方法

Fréchet Inception Distance (FID),是一种用于评估生成模型生成图像质量的指标,通常用于比较生成图像与真实图像之间的相似度,FID的数值越低表示生成的图像质量越好。具体来源可自行百度一下,这里不在介绍。FID是通过计算两组图像的均值,方差的距离,从而计算两组图像分布的相似读。直接看公式:
F I D ( r e a l , g e n ) = ∣ ∣ μ r e a l − μ g e n ∣ ∣ 2 2 + T r ( C r e a l + C g e n − 2 ( C r e a l C g e n ) 1 / 2 ) FID(real,gen) = ||\mu_{real}-\mu_{gen}||_2^2 + Tr(C_{real} + C_{gen} - 2(C_{real}C_{gen})^{1/2}) FID(real,gen)=∣∣μrealμgen22+Tr(Creal+Cgen2(CrealCgen)1/2)
其中 μ r e a l , μ g e n \mu_{real},\mu_{gen} μreal,μgen是real数据和gen数据分布的均值, C r e a l , C g e n C_{real},C_{gen} Creal,Cgen表示real和gen各自特征向量的各自的协方差;Tr表示矩阵的迹 T r ( A ) = ∑ i = 1 n A i i Tr(A)=\sum_{i=1}^nA_{ii} Tr(A)=i=1nAii(方阵对角线元素之和)。
这里需要注意到是,一般情况real数据和gen数据是经过inception V3模型提取图像特征后的结果,并非真实输入图片。

1.2 代码实现

虽然有些库里面集成了FID函数,为了更好理解,我们手动来实现这个代码。
主要分为三个部分来计算:

  • inception V3 特征提取
  • 均值计算、协方差计算
  • FID计算

具体我们来看一下完整代码实现。

import torch
import torchvision.models as models
import numpy as np
from scipy import linalg"""
FID 测试一般3000~5000张图片,
FID小于50:生成质量较好,可以认为生成的图像与真实图像相似度较高。
FID在50到100之间:生成质量一般,生成的图像与真实图像相似度一般。
FID大于100:生成质量较差,生成的图像与真实图像相似度较低。
"""# 加载预训练inception v3模型, 并移除top层,第一次运行会下载模型到cache里面
def load_inception():model = models.inception_v3(weights='IMAGENET1K_V1')model.eval()# 将fc用Identity()代替,即去掉fc层model.fc = torch.nn.Identity()return model# inception v3 特征提取
def extract_features(images, model):# images = images / 255.0with torch.no_grad():feat = model(images)return feat.numpy()# FID计算
def cal_fid(images1, images2):"""images1, images2: nchw 归一化,且维度resize到[N,3,299,299]"""model = load_inception()#1. inception v3 特征feats1 = extract_features(images1, model)feats2 = extract_features(images2, model)#2. 均值协方差feat1_mean, feat1_cov = np.mean(feats1, axis=0), np.cov(feats1, rowvar=False)feat2_mean, feat2_cov = np.mean(feats2, axis=0), np.cov(feats2, rowvar=False)#3. Fréchet距离sqrt_trace_cov = linalg.sqrtm(feat1_cov @ feat2_cov)fid = np.sum((feat1_mean - feat2_mean) ** 2) + np.trace(feat1_cov + feat2_cov - 2 * sqrt_trace_cov)return fid.realif __name__ == '__main__':f = cal_fid(torch.rand(1000, 3, 299, 299), torch.rand(1000, 3, 299, 299))print(f)

2. 构建GAN网络

参考:
https://github.com/growvv/GAN-Pytorch/blob/main/README.md

2.1 使用全连接构建一个最简单的GAN网络

2.1.1 网络结构

import torch
import torch.nn as nn
from torchinfo import summaryclass Discriminator(nn.Module):def __init__(self, in_features):super().__init__()self.disc = nn.Sequential(nn.Linear(in_features, 256),  # 784 -> 256nn.LeakyReLU(0.2),  #nn.Linear(256, 256), # 256 -> 256nn.LeakyReLU(0.2),nn.Linear(256, 1),  # 255 -> 1nn.Sigmoid(),   # 将实数映射到[0,1]区间)def forward(self, x):return self.disc(x)class Generator(nn.Module):def __init__(self, z_dim, image_dim):super().__init__()self.gen = nn.Sequential(nn.Linear(z_dim, 256),   # 64 升至 256维nn.ReLU(True),nn.Linear(256, 256),   # 256 -> 256nn.ReLU(True),nn.Linear(256, image_dim), # 256 -> 784nn.Tanh(),  # Tanh使得生成数据范围在[-1, 1],因为真实数据经过transforms后也是在这个区间)def forward(self, x):return self.gen(x)if __name__ == "__main__":gnet = Generator(64, 784)dnet = Discriminator(784)summary(gnet, input_data=[torch.randn(10, 64)])summary(dnet, input_data=[torch.randn(10, 784)])

网络结构运行以上代码,可以查看模型结构:

在这里插入图片描述

2.1.2 训练代码

以下是训练代码,直接可以运行

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
from simplegan import Generator, Discriminator# 超参数
device = "cuda" if torch.cuda.is_available() else "cpu"
lr = 3e-4
z_dim = 64
image_dim = 28 * 28 * 1
batch_size = 32
num_epochs = 100Disc = Discriminator(image_dim).to(device)
Gen = Generator(z_dim, image_dim).to(device)
opt_disc = optim.Adam(Disc.parameters(), lr=lr)
opt_gen = optim.Adam(Gen.parameters(), lr=lr)
criterion = nn.BCELoss()  # 单目标二分类交叉熵函数transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)),]
)
dataset = datasets.MNIST(root="dataset/", transform=transforms, download=True)
loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True)fixed_noise = torch.randn((batch_size, z_dim)).to(device)
write_fake = SummaryWriter(f'logs/fake')
write_real = SummaryWriter(f'logs/real')
step = 0for epoch in range(num_epochs):for batch_idx, (real, _) in enumerate(loader):real = real.view(-1, 784).to(device)batch_size = real.shape[0]## D: 目标:真的判断为真,假的判断为假## 训练Discriminator: max log(D(x)) + log(1-D(G(z)))disc_real = Disc(real)#.view(-1)  # 将真实图片放入到判别器中lossD_real = criterion(disc_real, torch.ones_like(disc_real))  # 真的判断为真noise = torch.randn(batch_size, z_dim).to(device)fake = Gen(noise)  # 将随机噪声放入到生成器中disc_fake = Disc(fake).view(-1)  # 识别器判断真假lossD_fake = criterion(disc_fake, torch.zeros_like(disc_fake))  # 假的应该判断为假lossD = (lossD_real + lossD_fake) / 2  # loss包括判真损失和判假损失Disc.zero_grad()   # 在反向传播前,先将梯度归0lossD.backward(retain_graph=True)  # 将误差反向传播opt_disc.step()   # 更新参数# G: 目标:生成的越真越好## 训练生成器: min log(1-D(G(z))) <-> max log(D(G(z)))output = Disc(fake).view(-1)   # 生成的放入识别器lossG = criterion(output, torch.ones_like(output))  # 与“真的”的距离,越小越好Gen.zero_grad()lossG.backward()opt_gen.step()# 输出一些信息,便于观察if batch_idx == 0:print(f"Epoch [{epoch}/{num_epochs}] Batch {batch_idx}/{len(loader)}' \loss D: {lossD:.4f}, loss G: {lossG:.4f}")with torch.no_grad():fake = Gen(fixed_noise).reshape(-1, 1, 28, 28)data = real.reshape(-1, 1, 28, 28)img_grid_fake = torchvision.utils.make_grid(fake, normalize=True)img_grid_real = torchvision.utils.make_grid(data, normalize=True)write_fake.add_image("Mnist Fake Image", img_grid_fake, global_step=step)write_real.add_image("Mnist Real Image", img_grid_real, global_step=step)step += 1

使用 tensorboard --logdir=./log/fake 查看生成的质量, 这个是41个epoch的结果,想要质量更好一点,可以继续训练。
在这里插入图片描述

2.2 DCGAN网络

DCGAN只是把全连接替换成全卷积的结构,思路完全一样,没什么变换

2.2.1 DCGAN网络结构

"""
Discriminator and Generator implementation from DCGAN paper
"""import torch
import torch.nn as nn
from torchinfo import summaryclass Discriminator(nn.Module):def __init__(self, channels_img, features_d):super().__init__()self.disc = nn.Sequential(self._block(channels_img, features_d, kernel_size=4, stride=2, padding=1),self._block(features_d, features_d * 2, 4, 2, 1),self._block(features_d * 2, features_d * 4, 4, 2, 1),self._block(features_d * 4, features_d * 8, 4, 2, 1),nn.Conv2d(features_d * 8, 1, kernel_size=4, stride=2, padding=0),nn.Sigmoid(),)def _block(self, in_channels, out_channels, kernel_size, stride, padding):return nn.Sequential(nn.Conv2d(in_channels,out_channels,kernel_size,stride,padding,bias=False),nn.LeakyReLU(0.2),)def forward(self, x):return self.disc(x)class Generator(nn.Module):def __init__(self, channels_noise, channels_img, features_g):super().__init__()self.gen = nn.Sequential(self._block(channels_noise, features_g * 16, 4, 1, 0),self._block(features_g * 16, features_g * 8, 4, 2, 1),self._block(features_g * 8, features_g * 4, 4, 2, 1),self._block(features_g * 4, features_g * 2, 4, 2, 1),nn.ConvTranspose2d(features_g * 2, channels_img, 4, 2, 1),nn.Tanh(),)def _block(self, in_channels, out_channels, kernel_size, stride, padding):return nn.Sequential(nn.ConvTranspose2d(in_channels,out_channels,kernel_size,stride,padding,bias=False,),nn.ReLU(),)def forward(self, x):return self.gen(x)def initialize_weights(model):## initilialize weight according to paperfor m in model.modules():if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d,)):nn.init.normal_(m.weight.data, 0.0, 0.02)def test():N, in_channels, H, W = 8, 1, 64, 64noise_dim = 100x = torch.randn(N, in_channels, H, W)disc = Discriminator(in_channels, 8)initialize_weights(disc)assert disc(x).shape == (N, 1, 1, 1), "Discriminator test failed"gen = Generator(noise_dim, in_channels, 8)initialize_weights(gen)z = torch.randn(N, noise_dim, 1, 1)assert gen(z).shape == (N, in_channels, H, W), "Generator test failed"if __name__ == "__main__":gnet = Generator(100, 1, 64)dnet = Discriminator(1, 64)summary(gnet, input_data=[torch.randn(10, 100, 1, 1)])summary(dnet, input_data=[torch.randn(10, 1, 64, 64)])

2.2.2 训练代码

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
from dcgan import Generator, Discriminator, initialize_weights
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
import torchvisionLEARNING_RATE = 2e-4
BATCH_SIZE = 128
IMAGE_SIZE = 64
NUM_EPOCHS = 5
CHANNELS_IMG = 1
NOISE_DIM = 100
FEATURES_DISC = 64
FEATURES_GEN = 64transforms = transforms.Compose([transforms.Resize(IMAGE_SIZE),transforms.ToTensor(),transforms.Normalize([0.5 for _ in range(CHANNELS_IMG)], [0.5 for _ in range(CHANNELS_IMG)]),]
)write_fake = SummaryWriter(f'log/fake')
write_real = SummaryWriter(f'log/real')def train(NUM_EPOCHS, gpuid):device = torch.device(f"cuda:{gpuid}")# 数据load# dataset = datasets.ImageFolder(root="celeb_dataset", transform=transforms)dataset = MNIST(root='./data', train=True, download=True, transform=transforms)dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)gen = Generator(NOISE_DIM, CHANNELS_IMG, FEATURES_GEN).to(device)disc = Discriminator(CHANNELS_IMG, FEATURES_DISC).to(device)initialize_weights(gen)initialize_weights(disc)opt_gen = optim.Adam(gen.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))opt_disc = optim.Adam(disc.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))criterion = nn.BCELoss()fixed_noise = torch.randn(32, NOISE_DIM, 1, 1).to(device)writer_real = SummaryWriter(f"logs2/real")writer_fake = SummaryWriter(f"logs2/fake")step = 0gen.train()disc.train()for epoch in range(NUM_EPOCHS):# 不需要目标的标签,无监督for batch_id, (real, _) in enumerate(dataloader):real = real.to(device)noise = torch.randn(BATCH_SIZE, NOISE_DIM, 1, 1).to(device)fake = gen(noise)# Train Discriminator: max log(D(x)) + log(1 - D(G(z)))disc_real = disc(real).reshape(-1)loss_real = criterion(disc_real, torch.ones_like(disc_real))disc_fake = disc(fake.detach()).reshape(-1)loss_fake = criterion(disc_fake, torch.zeros_like(disc_fake))loss_disc = (loss_real + loss_fake) / 2disc.zero_grad()loss_disc.backward()opt_disc.step()# Train Generator: min log(1 - D(G(z))) <-> max log(D(G(z)), 先训练一个epoch 的Dif epoch >= 0:output = disc(fake).reshape(-1)loss_gen = criterion(output, torch.ones_like(output))gen.zero_grad()loss_gen.backward()opt_gen.step()if batch_id % 20 == 0:print(f'Epoch [{epoch}/{NUM_EPOCHS}] Batch {batch_id}/{len(dataloader)} Loss D: {loss_disc}, loss G: {loss_gen}')with torch.no_grad():fake = gen(fixed_noise)img_grid_real = torchvision.utils.make_grid(real[:32], normalize=True)img_grid_fake = torchvision.utils.make_grid(fake[:32], normalize=True)writer_real.add_image("Real Image", img_grid_real, global_step=step)writer_fake.add_image("Fake Image", img_grid_fake, global_step=step)step += 1if __name__ == "__main__":train(100, 0)

同样使用tensorboard --logdir=./logs2/fake 查看生成的质量,大概10个epoch的结果

在这里插入图片描述

结论

FID指标可自行测试。GAN的基本训练思路是完全按照论文来做的,包括损失函数设计完全跟论文一致。具体理论可仔细看上一篇博客。如有不足,错误请指出。

这篇关于使用pytorch构建GAN网络并实现FID评估的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967599

相关文章

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

PyQt6/PySide6中QTableView类的实现

《PyQt6/PySide6中QTableView类的实现》本文主要介绍了PyQt6/PySide6中QTableView类的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学... 目录1. 基本概念2. 创建 QTableView 实例3. QTableView 的常用属性和方法

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

PyQt6/PySide6中QTreeView类的实现

《PyQt6/PySide6中QTreeView类的实现》QTreeView是PyQt6或PySide6库中用于显示分层数据的控件,本文主要介绍了PyQt6/PySide6中QTreeView类的实现... 目录1. 基本概念2. 创建 QTreeView 实例3. QTreeView 的常用属性和方法属性