使用pytorch构建GAN网络并实现FID评估

2024-05-07 14:20

本文主要是介绍使用pytorch构建GAN网络并实现FID评估,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇文章介绍了GAN的详细理论,只要掌握了GAN,对于后面各种GAN的变形都变得很简单,基础打好了,盖大楼自然就容易了。既然有了理论,实践也是必不可少的,这篇文章将使用mnist数据集来实现简单的GAN网络,并附带使用FID来评估生成质量。

1. FID评估方法

1.1 计算方法

Fréchet Inception Distance (FID),是一种用于评估生成模型生成图像质量的指标,通常用于比较生成图像与真实图像之间的相似度,FID的数值越低表示生成的图像质量越好。具体来源可自行百度一下,这里不在介绍。FID是通过计算两组图像的均值,方差的距离,从而计算两组图像分布的相似读。直接看公式:
F I D ( r e a l , g e n ) = ∣ ∣ μ r e a l − μ g e n ∣ ∣ 2 2 + T r ( C r e a l + C g e n − 2 ( C r e a l C g e n ) 1 / 2 ) FID(real,gen) = ||\mu_{real}-\mu_{gen}||_2^2 + Tr(C_{real} + C_{gen} - 2(C_{real}C_{gen})^{1/2}) FID(real,gen)=∣∣μrealμgen22+Tr(Creal+Cgen2(CrealCgen)1/2)
其中 μ r e a l , μ g e n \mu_{real},\mu_{gen} μreal,μgen是real数据和gen数据分布的均值, C r e a l , C g e n C_{real},C_{gen} Creal,Cgen表示real和gen各自特征向量的各自的协方差;Tr表示矩阵的迹 T r ( A ) = ∑ i = 1 n A i i Tr(A)=\sum_{i=1}^nA_{ii} Tr(A)=i=1nAii(方阵对角线元素之和)。
这里需要注意到是,一般情况real数据和gen数据是经过inception V3模型提取图像特征后的结果,并非真实输入图片。

1.2 代码实现

虽然有些库里面集成了FID函数,为了更好理解,我们手动来实现这个代码。
主要分为三个部分来计算:

  • inception V3 特征提取
  • 均值计算、协方差计算
  • FID计算

具体我们来看一下完整代码实现。

import torch
import torchvision.models as models
import numpy as np
from scipy import linalg"""
FID 测试一般3000~5000张图片,
FID小于50:生成质量较好,可以认为生成的图像与真实图像相似度较高。
FID在50到100之间:生成质量一般,生成的图像与真实图像相似度一般。
FID大于100:生成质量较差,生成的图像与真实图像相似度较低。
"""# 加载预训练inception v3模型, 并移除top层,第一次运行会下载模型到cache里面
def load_inception():model = models.inception_v3(weights='IMAGENET1K_V1')model.eval()# 将fc用Identity()代替,即去掉fc层model.fc = torch.nn.Identity()return model# inception v3 特征提取
def extract_features(images, model):# images = images / 255.0with torch.no_grad():feat = model(images)return feat.numpy()# FID计算
def cal_fid(images1, images2):"""images1, images2: nchw 归一化,且维度resize到[N,3,299,299]"""model = load_inception()#1. inception v3 特征feats1 = extract_features(images1, model)feats2 = extract_features(images2, model)#2. 均值协方差feat1_mean, feat1_cov = np.mean(feats1, axis=0), np.cov(feats1, rowvar=False)feat2_mean, feat2_cov = np.mean(feats2, axis=0), np.cov(feats2, rowvar=False)#3. Fréchet距离sqrt_trace_cov = linalg.sqrtm(feat1_cov @ feat2_cov)fid = np.sum((feat1_mean - feat2_mean) ** 2) + np.trace(feat1_cov + feat2_cov - 2 * sqrt_trace_cov)return fid.realif __name__ == '__main__':f = cal_fid(torch.rand(1000, 3, 299, 299), torch.rand(1000, 3, 299, 299))print(f)

2. 构建GAN网络

参考:
https://github.com/growvv/GAN-Pytorch/blob/main/README.md

2.1 使用全连接构建一个最简单的GAN网络

2.1.1 网络结构

import torch
import torch.nn as nn
from torchinfo import summaryclass Discriminator(nn.Module):def __init__(self, in_features):super().__init__()self.disc = nn.Sequential(nn.Linear(in_features, 256),  # 784 -> 256nn.LeakyReLU(0.2),  #nn.Linear(256, 256), # 256 -> 256nn.LeakyReLU(0.2),nn.Linear(256, 1),  # 255 -> 1nn.Sigmoid(),   # 将实数映射到[0,1]区间)def forward(self, x):return self.disc(x)class Generator(nn.Module):def __init__(self, z_dim, image_dim):super().__init__()self.gen = nn.Sequential(nn.Linear(z_dim, 256),   # 64 升至 256维nn.ReLU(True),nn.Linear(256, 256),   # 256 -> 256nn.ReLU(True),nn.Linear(256, image_dim), # 256 -> 784nn.Tanh(),  # Tanh使得生成数据范围在[-1, 1],因为真实数据经过transforms后也是在这个区间)def forward(self, x):return self.gen(x)if __name__ == "__main__":gnet = Generator(64, 784)dnet = Discriminator(784)summary(gnet, input_data=[torch.randn(10, 64)])summary(dnet, input_data=[torch.randn(10, 784)])

网络结构运行以上代码,可以查看模型结构:

在这里插入图片描述

2.1.2 训练代码

以下是训练代码,直接可以运行

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
from simplegan import Generator, Discriminator# 超参数
device = "cuda" if torch.cuda.is_available() else "cpu"
lr = 3e-4
z_dim = 64
image_dim = 28 * 28 * 1
batch_size = 32
num_epochs = 100Disc = Discriminator(image_dim).to(device)
Gen = Generator(z_dim, image_dim).to(device)
opt_disc = optim.Adam(Disc.parameters(), lr=lr)
opt_gen = optim.Adam(Gen.parameters(), lr=lr)
criterion = nn.BCELoss()  # 单目标二分类交叉熵函数transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)),]
)
dataset = datasets.MNIST(root="dataset/", transform=transforms, download=True)
loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True)fixed_noise = torch.randn((batch_size, z_dim)).to(device)
write_fake = SummaryWriter(f'logs/fake')
write_real = SummaryWriter(f'logs/real')
step = 0for epoch in range(num_epochs):for batch_idx, (real, _) in enumerate(loader):real = real.view(-1, 784).to(device)batch_size = real.shape[0]## D: 目标:真的判断为真,假的判断为假## 训练Discriminator: max log(D(x)) + log(1-D(G(z)))disc_real = Disc(real)#.view(-1)  # 将真实图片放入到判别器中lossD_real = criterion(disc_real, torch.ones_like(disc_real))  # 真的判断为真noise = torch.randn(batch_size, z_dim).to(device)fake = Gen(noise)  # 将随机噪声放入到生成器中disc_fake = Disc(fake).view(-1)  # 识别器判断真假lossD_fake = criterion(disc_fake, torch.zeros_like(disc_fake))  # 假的应该判断为假lossD = (lossD_real + lossD_fake) / 2  # loss包括判真损失和判假损失Disc.zero_grad()   # 在反向传播前,先将梯度归0lossD.backward(retain_graph=True)  # 将误差反向传播opt_disc.step()   # 更新参数# G: 目标:生成的越真越好## 训练生成器: min log(1-D(G(z))) <-> max log(D(G(z)))output = Disc(fake).view(-1)   # 生成的放入识别器lossG = criterion(output, torch.ones_like(output))  # 与“真的”的距离,越小越好Gen.zero_grad()lossG.backward()opt_gen.step()# 输出一些信息,便于观察if batch_idx == 0:print(f"Epoch [{epoch}/{num_epochs}] Batch {batch_idx}/{len(loader)}' \loss D: {lossD:.4f}, loss G: {lossG:.4f}")with torch.no_grad():fake = Gen(fixed_noise).reshape(-1, 1, 28, 28)data = real.reshape(-1, 1, 28, 28)img_grid_fake = torchvision.utils.make_grid(fake, normalize=True)img_grid_real = torchvision.utils.make_grid(data, normalize=True)write_fake.add_image("Mnist Fake Image", img_grid_fake, global_step=step)write_real.add_image("Mnist Real Image", img_grid_real, global_step=step)step += 1

使用 tensorboard --logdir=./log/fake 查看生成的质量, 这个是41个epoch的结果,想要质量更好一点,可以继续训练。
在这里插入图片描述

2.2 DCGAN网络

DCGAN只是把全连接替换成全卷积的结构,思路完全一样,没什么变换

2.2.1 DCGAN网络结构

"""
Discriminator and Generator implementation from DCGAN paper
"""import torch
import torch.nn as nn
from torchinfo import summaryclass Discriminator(nn.Module):def __init__(self, channels_img, features_d):super().__init__()self.disc = nn.Sequential(self._block(channels_img, features_d, kernel_size=4, stride=2, padding=1),self._block(features_d, features_d * 2, 4, 2, 1),self._block(features_d * 2, features_d * 4, 4, 2, 1),self._block(features_d * 4, features_d * 8, 4, 2, 1),nn.Conv2d(features_d * 8, 1, kernel_size=4, stride=2, padding=0),nn.Sigmoid(),)def _block(self, in_channels, out_channels, kernel_size, stride, padding):return nn.Sequential(nn.Conv2d(in_channels,out_channels,kernel_size,stride,padding,bias=False),nn.LeakyReLU(0.2),)def forward(self, x):return self.disc(x)class Generator(nn.Module):def __init__(self, channels_noise, channels_img, features_g):super().__init__()self.gen = nn.Sequential(self._block(channels_noise, features_g * 16, 4, 1, 0),self._block(features_g * 16, features_g * 8, 4, 2, 1),self._block(features_g * 8, features_g * 4, 4, 2, 1),self._block(features_g * 4, features_g * 2, 4, 2, 1),nn.ConvTranspose2d(features_g * 2, channels_img, 4, 2, 1),nn.Tanh(),)def _block(self, in_channels, out_channels, kernel_size, stride, padding):return nn.Sequential(nn.ConvTranspose2d(in_channels,out_channels,kernel_size,stride,padding,bias=False,),nn.ReLU(),)def forward(self, x):return self.gen(x)def initialize_weights(model):## initilialize weight according to paperfor m in model.modules():if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d,)):nn.init.normal_(m.weight.data, 0.0, 0.02)def test():N, in_channels, H, W = 8, 1, 64, 64noise_dim = 100x = torch.randn(N, in_channels, H, W)disc = Discriminator(in_channels, 8)initialize_weights(disc)assert disc(x).shape == (N, 1, 1, 1), "Discriminator test failed"gen = Generator(noise_dim, in_channels, 8)initialize_weights(gen)z = torch.randn(N, noise_dim, 1, 1)assert gen(z).shape == (N, in_channels, H, W), "Generator test failed"if __name__ == "__main__":gnet = Generator(100, 1, 64)dnet = Discriminator(1, 64)summary(gnet, input_data=[torch.randn(10, 100, 1, 1)])summary(dnet, input_data=[torch.randn(10, 1, 64, 64)])

2.2.2 训练代码

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
from dcgan import Generator, Discriminator, initialize_weights
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
import torchvisionLEARNING_RATE = 2e-4
BATCH_SIZE = 128
IMAGE_SIZE = 64
NUM_EPOCHS = 5
CHANNELS_IMG = 1
NOISE_DIM = 100
FEATURES_DISC = 64
FEATURES_GEN = 64transforms = transforms.Compose([transforms.Resize(IMAGE_SIZE),transforms.ToTensor(),transforms.Normalize([0.5 for _ in range(CHANNELS_IMG)], [0.5 for _ in range(CHANNELS_IMG)]),]
)write_fake = SummaryWriter(f'log/fake')
write_real = SummaryWriter(f'log/real')def train(NUM_EPOCHS, gpuid):device = torch.device(f"cuda:{gpuid}")# 数据load# dataset = datasets.ImageFolder(root="celeb_dataset", transform=transforms)dataset = MNIST(root='./data', train=True, download=True, transform=transforms)dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)gen = Generator(NOISE_DIM, CHANNELS_IMG, FEATURES_GEN).to(device)disc = Discriminator(CHANNELS_IMG, FEATURES_DISC).to(device)initialize_weights(gen)initialize_weights(disc)opt_gen = optim.Adam(gen.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))opt_disc = optim.Adam(disc.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))criterion = nn.BCELoss()fixed_noise = torch.randn(32, NOISE_DIM, 1, 1).to(device)writer_real = SummaryWriter(f"logs2/real")writer_fake = SummaryWriter(f"logs2/fake")step = 0gen.train()disc.train()for epoch in range(NUM_EPOCHS):# 不需要目标的标签,无监督for batch_id, (real, _) in enumerate(dataloader):real = real.to(device)noise = torch.randn(BATCH_SIZE, NOISE_DIM, 1, 1).to(device)fake = gen(noise)# Train Discriminator: max log(D(x)) + log(1 - D(G(z)))disc_real = disc(real).reshape(-1)loss_real = criterion(disc_real, torch.ones_like(disc_real))disc_fake = disc(fake.detach()).reshape(-1)loss_fake = criterion(disc_fake, torch.zeros_like(disc_fake))loss_disc = (loss_real + loss_fake) / 2disc.zero_grad()loss_disc.backward()opt_disc.step()# Train Generator: min log(1 - D(G(z))) <-> max log(D(G(z)), 先训练一个epoch 的Dif epoch >= 0:output = disc(fake).reshape(-1)loss_gen = criterion(output, torch.ones_like(output))gen.zero_grad()loss_gen.backward()opt_gen.step()if batch_id % 20 == 0:print(f'Epoch [{epoch}/{NUM_EPOCHS}] Batch {batch_id}/{len(dataloader)} Loss D: {loss_disc}, loss G: {loss_gen}')with torch.no_grad():fake = gen(fixed_noise)img_grid_real = torchvision.utils.make_grid(real[:32], normalize=True)img_grid_fake = torchvision.utils.make_grid(fake[:32], normalize=True)writer_real.add_image("Real Image", img_grid_real, global_step=step)writer_fake.add_image("Fake Image", img_grid_fake, global_step=step)step += 1if __name__ == "__main__":train(100, 0)

同样使用tensorboard --logdir=./logs2/fake 查看生成的质量,大概10个epoch的结果

在这里插入图片描述

结论

FID指标可自行测试。GAN的基本训练思路是完全按照论文来做的,包括损失函数设计完全跟论文一致。具体理论可仔细看上一篇博客。如有不足,错误请指出。

这篇关于使用pytorch构建GAN网络并实现FID评估的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967599

相关文章

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB