KM算法的简单总结 二部图的最大权匹配

2024-05-07 08:38

本文主要是介绍KM算法的简单总结 二部图的最大权匹配,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们都知道有最大匹配,但如果说要加上费用,也就是已知每两个匹配的价值,要求出最大价值的匹配。

这个可以用费用流,但KM算法的效率要远远比费用流好。

KM算法有点贪心的思想,是通过不断的放宽费用的流量来实现的,当发现找不到匹配时,就一点点地放宽。

至于最小权,我没有找到代码。但其实可以把权值取相反数,再求最大权也是一样的。


摘自 百度百科:

KM算法求的是完备匹配下的最大权匹配: 在一个二分图内,左顶点为X,右顶点为Y,现对于每组左右连接XiYj有权wij,求一种匹配使得所有wij的和最大。
该算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[ i ]+B[j]>=w[i,j]始终成立。
KM算法的正确性基于以下定理:
若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。
首先解释下什么是完备匹配,所谓的完备匹配就是在二部图中,X点集中的所有点都有对应的匹配或者是
Y点集中所有的点都有对应的匹配,则称该匹配为完备匹配。
这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。
初始时为了使A[ i ]+B[j]>=w[i,j]恒成立,令A[ i ]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。
我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:
1)两端都在交错树中的边(i,j),A[ i ]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。
2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。
3)X端不在交错树中,Y端在交错树中的边(i,j),它的A[ i ]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。
4)X端在交错树中,Y端不在交错树中的边(i,j),它的A[ i ]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。
现在的问题就是求d值了。为了使A[ i ]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于:
Min{A[ i ]+B[j]-w[i,j] | Xi在交错树中,Yi不在交错树中}。

bool find(int x)
{visx[x]=true;for(int y=0;y<maxn; y++){if(visy[y])continue;int t=lx[x]+ly[y]-w[x][y];if(t==0){visy[y]=true;if(linky[y]==-1||find(linky[y])){linky[y]=x;return true;}}else if(lack>t)lack=t;}return false;
}
void KM()
{memset(linky,-1,sizeof(linky));for(int i=0;i<maxn; i++)for(int j=0;j<maxn; j++)if(w[i][j]>lx[i])lx[i]=w[i][j]; //初始化顶标for(int x=0;x<maxn; x++){for(;;){memset(visx,0,sizeof(visx));memset(visy,0,sizeof(visy));lack=INF;if(find(x))break;for(int i=0;i<maxn; i++){if(visx[i])lx[i]-=lack;if(visy[i])ly[i]+=lack;}}}
}


这篇关于KM算法的简单总结 二部图的最大权匹配的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966856

相关文章

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python中实现进度条的多种方法总结

《Python中实现进度条的多种方法总结》在Python编程中,进度条是一个非常有用的功能,它能让用户直观地了解任务的进度,提升用户体验,本文将介绍几种在Python中实现进度条的常用方法,并通过代码... 目录一、简单的打印方式二、使用tqdm库三、使用alive-progress库四、使用progres

使用IntelliJ IDEA创建简单的Java Web项目完整步骤

《使用IntelliJIDEA创建简单的JavaWeb项目完整步骤》:本文主要介绍如何使用IntelliJIDEA创建一个简单的JavaWeb项目,实现登录、注册和查看用户列表功能,使用Se... 目录前置准备项目功能实现步骤1. 创建项目2. 配置 Tomcat3. 项目文件结构4. 创建数据库和表5.

使用PyQt5编写一个简单的取色器

《使用PyQt5编写一个简单的取色器》:本文主要介绍PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16进制颜色编码,一款跟随鼠标刷新图像的RGB和16... 目录取色器1取色器2PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16

四种简单方法 轻松进入电脑主板 BIOS 或 UEFI 固件设置

《四种简单方法轻松进入电脑主板BIOS或UEFI固件设置》设置BIOS/UEFI是计算机维护和管理中的一项重要任务,它允许用户配置计算机的启动选项、硬件设置和其他关键参数,该怎么进入呢?下面... 随着计算机技术的发展,大多数主流 PC 和笔记本已经从传统 BIOS 转向了 UEFI 固件。很多时候,我们也

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

Java向kettle8.0传递参数的方式总结

《Java向kettle8.0传递参数的方式总结》介绍了如何在Kettle中传递参数到转换和作业中,包括设置全局properties、使用TransMeta和JobMeta的parameterValu... 目录1.传递参数到转换中2.传递参数到作业中总结1.传递参数到转换中1.1. 通过设置Trans的