虚拟化界的强强联手:VirtIO与GPU虚拟化的完美结合

2024-05-07 01:12

本文主要是介绍虚拟化界的强强联手:VirtIO与GPU虚拟化的完美结合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近距离了解 VirtIO 和 GPU 虚拟化

  

这是一篇 Linaro 开发团队项目组的科普文章。我们在处理器虚拟化项目中,经常会遇到 VirtIO 相关的问题;比如运行 Andriod 系统的时候需要运行 VirtIO 组件。‍‍‍随着 Cassini 项目和 SOAFEE(嵌入式边缘可扩展开放架构)等项目的开发,VirtIO 成为支持基于标准的云原生边缘开发/部署环境的关键构件,旨在实现这些高效的 EDGE 开发环境。GPU 虚拟化是 VirtIO 中较为复杂的组件之一。

本文将讨论其中的一些挑战以及 Linaro 开发团队在这一领域取得的进展。基于VirtIO的块和网络设备是相对简单的抽象,可以很好地映射到底层硬件。这些设备经过多轮优化,最大限度地减少了虚拟化开销。由于硬件种类繁多,图形处理器(GPU)更难抽象化。在简单的 2D 图形时代,任何特定的硬件都只能支持特定范围的内存布局和色深。随着技术的发展,图形引擎获得了复制内存区域、管理精灵或旋转纹理等各种不同的能力。随着 3D 技术的出现,情况并没有变得更简单。

现代 GPU 实际上是一种特殊用途处理器,经过优化后可以执行渲染现代场景所需的大量并行计算。很多现代超级计算机都以这些数字运算流水线为核心,这并不奇怪。然而,与大多数 CPU 不同的是,GPU 执行模型的细节往往不为用户所知。通常情况下,GPU 要么使用更高级别的 API 进行编程,然后由专有的二进制 Blob 将其翻译成秘密的隐藏指令流,再输送到 GPU。虽然有许多开放的 GPU 编程 API,旨在实现 GPU 之间的可移植性,但也有与特定硬件绑定的供应商专用库。所有这些都使得 GPU 虚拟化成为一个特别具有挑战性的领域。可以使用的方法大致有两种:虚拟函数和 API 转发。89f75f285230010ce75a67502e9413ab.jpeg
虚拟功能

这种方法与其他高性能虚拟化硬件的做法类似,都是将单个物理卡划分为多个虚拟功能(VF)。然后,每个 VF 都可以与访客共享,访客可以直接驱动它,就像作为主机运行一样。在服务器领域,主要 GPU 厂商(英特尔、AMD、nVidia)的高端 GPU 卡都支持 SR-IOV。它使用成熟的 PCI 分区在客户机之间划分 VF。然而,面向汽车和工业市场的 GPU 面临两个挑战:
- VF 数量较少(可能只有 2 个,需要抽象化)- 平台特定的分区方案市场上支持 VF 分区的 GPU 仍然相当罕见,而且现有的 GPU 通常只支持有限的分割,这意味着仍然需要一个完全抽象的虚拟 GPU 来复用多个有图形需求的客户。由于这些设备通常是平台设备(即直接映射内存,而非 PCI 设备),因此需要在固件、平台和驱动程序之间协调,才能支持这些 VF 的分配。从简洁抽象的角度来看,这使得问题变得更加复杂。
软件辅助虚拟功能为了解决这些限制,我们采用了各种软件辅助方法来弥补纯硬件支持的不足。其最初形式是一种名为 "中介设备"(mdev)的扩展,在硬件允许的情况下,它允许主机内核对设备进行分区。目前,支持该功能的内核驱动程序只有英特尔 i915 驱动程序和一个 s390 加密驱动程序。

d13f3aa9412403eb7aedc652b7547235.jpeg

利用 virtIO-gpu 的扩展(本地上下文)优化 GPU 虚拟化。
此方法:
- 利用 VirtIO 机制实现常用功能
- 直接向客户机提供原生上下文
- 客户机运行经过修改的原生 GPU 驱动程序,支持:
- VirtIO 感知
- 针对特定 GPU 的自定义协议


应用程序接口转发GPU 虚拟化的另一种方法是 API 转发。它的工作原理是为客户提供一个理想化的虚拟硬件,该硬件与共享库抽象的要求密切相关。VirtIO GPU 最初的 3D 加速基于 OpenGL。

该设备提供了一个名为 VirGL 的虚拟 OpenGL 设备,它基于 Gallium3D 接口。这样,访客只需向设备输入一系列 OpenGL 命令和通用的独立于 GPU 的着色器中间语言。在后端,这些命令被输入 virglrenderer,然后通过主机 GPU 进行渲染。1309ab8268ed3121a4429514d97e8bcb.jpeg对 VirGL 方法的主要不满在于效率。虽然可以运行流畅的桌面体验,但性能却远低于直接在主机上运行的预期。其中一个原因可能是古老的 OpenGl 编程模型与现代 GPU 的编程方式相比过于抽象。再加上不可避免的虚拟化开销,加剧了其性能问题。为了取代 OpenGL,我们开发了一种名为 Vulkan 的更现代的 API,它是一种更低级的编程 API,更贴近现代图形硬件的工作方式。它还将图形与计算工作流(GPUS 的一个重要用例)统一在一个 API 下。

虽然虚拟 GPU 对 Vulkan 的支持尚未在 QEMU 等项目中实现,但一些替代虚拟机监控器(VMM)能够使用这种模式提供更高效的虚拟 GPU 实现。最后还有第三种协议,即 Wayland 协议,它并不直接针对 GPU,而是用于与支持 3D 的显示服务器进行对话。这样,在客户机中运行的客户程序就能与主机显示管理器无缝集成。最初的用例是让 CrosVM 客户端中的 Linux 应用程序与 ChromeOS 主机集成。有趣的是,该协议还针对车载娱乐系统进行了扩展。
两种方法的比较对于那些希望通过保持尽可能轻量级的抽象来尽可能提高图形硬件性能的用户来说,虚拟函数似乎是未来的发展方向。此外,通过将复杂的图形栈隔离在客户域库中,还可以降低开发风险,这也是一个很好的安全论据。GPU 就其本质而言,必须处理大量不受信任的访客数据。

不过,这种直通方法也有一些缺点。在云原生开发中,最大的问题是将客户代码绑定到特定的 GPU 架构上,这意味着云和边缘部署之间的可移植性较差。此外,对于 Linaro 这家主要使用开源技术的公司来说,增加支持需要访问遍布整个堆栈的专有代码,而不是处理开源抽象。我们认为,通过使用 Rust 等更安全的语言编写 VirtIO 后端,图形堆栈的一些安全问题可以得到改善。 但需要注意的是,大部分后端最终仍将使用普通 C 语言库进行处理。要降低特权主机被攻击的风险,一种方法是将图形后端转移到单独的虚拟机(有时称为驱动域)中。这样,如果守护进程被攻破,攻击者仍会被控制在一个相对有限的环境中。d476dcb33f320b0788718e014936f853.jpeg

与 Orko 项目的关系

Orko 项目是我们之前的虚拟化项目 Stratos 的精神继承者。我们正在努力将一些 VirtIO 设备集成到 SOAFEE 参考平台中,以加快其应用。多媒体是汽车工作负载的主要驱动力,因此拥有一个实用的 GPU 解决方案非常重要。最初有两项工作计划用于支持 GPU。

衡量抽象成本

虽然有一些关于 VirGL 在某些系统上的性能的轶事,但我们还没有看到对这些抽象在 ARM 硬件上的成本进行全面测量。我们想知道这些较新的图形管线是否可用于处理像运行 AAA 级游戏一样的繁重工作负载,而不会产生过多的开销。

对于 QEMU,有几个小组提出了各种补丁,通过各种扩展来增强 virtio-gpu 设备。我们打算在帮助审查的同时,将这些补丁与 QEMU 最近的 xenpvh 支持集成,并开始在实际硬件上测量每个抽象的成本。我们还想探索使用 CrosVM Wayland 后端(它在引擎盖下使用 vhost-user),看看与 QEMU 的 xenpvh 模式和我们的 Xen vhost-user 前端集成有多少工作量。
独立的 virtio-gpu 守护进程

虽然我们在 SOAFEE 平台中使用 QEMU 来帮助启动 VirtIO 设备,但我们的愿景仍然是利用 rust-vmm 组件,使用 Rust 编写独立于管理程序的独立守护进程。独立守护进程之所以有用,还有很多其他原因:

  • 通过 rust-vmm 特质和 vhost-user 扩展,我们隐藏了 Xen 中映射内存和通知的底层实现,实现了跨管理程序的抽象层。这种方法简化了管理程序的交互,并提高了虚拟机管理的灵活性。
  • 如果没有独立于核心 VMM 的后端,我们就无法尝试我之前讨论过的驱动域概念


最好的办法是扩展 CrosVM 的 Wayland 实现以支持其他 GPU 命令流,还是从头开始编写一个新的后端,还有待观察。我们目前正在进行准备工作,测量各种抽象的开销,以帮助我们了解未来的发展方向。 

-对此,您有什么看法见解?-

-欢迎在评论区留言探讨和分享。-

这篇关于虚拟化界的强强联手:VirtIO与GPU虚拟化的完美结合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/965911

相关文章

Toolbar+DrawerLayout使用详情结合网络各大神

最近也想搞下toolbar+drawerlayout的使用。结合网络上各大神的杰作,我把大部分的内容效果都完成了遍。现在记录下各个功能效果的实现以及一些细节注意点。 这图弹出两个菜单内容都是仿QQ界面的选项。左边一个是drawerlayout的弹窗。右边是toolbar的popup弹窗。 开始实现步骤详情: 1.创建toolbar布局跟drawerlayout布局 <?xml vers

移动硬盘盒:便携与交互的完美结合 PD 充电IC

在数字化时代的浪潮中,数据已成为我们生活中不可或缺的一部分。随着数据的不断增长,人们对于数据存储的需求也在不断增加。传统的存储设备如U盘、光盘等,虽然具有一定的便携性,但在容量和稳定性方面往往难以满足现代人的需求。而移动硬盘,以其大容量、高稳定性和可移动性,成为了数据存储的优选方案。然而,单纯的移动硬盘在携带和使用上仍存在诸多不便,于是,移动硬盘盒应运而生,以其独特的便携性和交互性,成为了数据存储

Tkinter和selenium结合实现登录UC后台,最后打包成exe

主要实现的功能:小号模式自动登录UC阿里汇川广告后台,屏蔽账号密码输入 主要用的技术:用Tkinter展示所有的广告账号界面,使用selenium控制谷歌浏览器,打开阿里汇川登录页,登录汇川后台。 第一次写,遇到的坑比较多,三天,搞定。给自己一个棒棒~☺️ import Tkinter as tk import osimport sysimport requestsfrom sel

红队内网攻防渗透:内网渗透之内网对抗:横向移动篇Kerberos委派安全RBCD资源Operators组成员HTLMRelay结合

基于资源的约束委派(RBCD)是在Windows Server 2012中新加入的功能,与传统的约束委派相比,它不再需要域管理员权限去设置相关属性。RBCD把设置委派的权限赋予了机器自身,既机器自己可以决定谁可以被委派来控制我。也就是说机器自身可以直接在自己账户上配置msDS-AllowedToActOnBehalfOfOtherIdentity属性来设置RBCD。 所以核心就是谁或什么权限能修改

GPU集群搭建-IDC要求

高性能GPU服务器集群对于IDC(Internet Data Center)的配电环境有特定的要求,主要涉及到电力供应的稳定性和冗余性、电力质量、以及冷却系统等几个关键方面: 1. **高功率密度**:GPU服务器因执行密集型计算任务,如人工智能、深度学习和高性能计算,往往消耗较大的电能。因此,IDC需要提供高功率密度的机架,通常每个机架的功率范围可达10kW到50kW甚至更高,以满足这些服务器

工厂方法模式--结合具体例子学习工厂方法模式

在学习工厂方法模式之前,可以先学习一下简单工厂模式,网址是http://blog.csdn.net/u012116457/article/details/21650421,这里仍以水果的实例讲解。   先来说说简单工厂模式的特点,简单工厂模式将具体类的创建交给了工厂,使客户端不再直接依赖于产品,但是其违背了OCP原则,当对系统进行扩展时,仍然需要去修改原有的工厂类的代码。 而工厂方法模式则解

简单工厂模式--结合实例学习简单工厂模式

在讲解简单工厂模式之前,有必要先了解一下OO的一些原则  1.OCP(开闭原则,Open-Closed Principle):一个软件的实体应当对扩展开放,对修改关闭。也就是说,对于一个已有的软件,如果需要扩展,应当在不需修改      已有代码的基础上进行。   2.DIP(依赖倒转原则,Dependence Inversion Principle):要针对接口编程,不要针对实现编程。简单点说

GPU系列2

GPU孙泽简单命令

GPU系列1

【服务器bilibili】 netsarang进入官网 输入指令: python #进入python编译环境 import tensorflow as tf tf.version #查看tersorflow版本 tf.test.is_gpu_available() #查看tf是否支持GPU 如显示最后为True,表示支持 传输文件–Xftp 推荐压缩为zip格式 传输快 e.g:xx.zip

cpp随笔——浅谈右值引用,移动语义与完美转发

右值引用 什么是右值 在cpp11中添加了一个新的类型叫做右值引用,记作&&,而在开始今天的正文之前我们先来看一下什么是左值什么是右值: 左值(&):存储在内存中,有明确存储地址的数据右值(&&):临时对象,可以提供数据(不可取地址访问) 而在cpp11中我们可以将右值分为两种: 纯右值:非引用返回的临时变量,比如运算表达式产生的临时变量,原始字面量以及lambda表达式等将亡值:与右值