STM32单片机实战开发笔记-I2C通讯总线【wulianjishu666】

本文主要是介绍STM32单片机实战开发笔记-I2C通讯总线【wulianjishu666】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

嵌入式单片机开发实战例程合集:

链接:https://pan.baidu.com/s/11av8rV45dtHO0EHf8e_Q0Q?pwd=28ab
提取码:28ab

I2C模块测试

  1. 功能描述

I2C总线接口连接微控制器和串行I2C总线。它提供多主机功能,控制所有I2C总线特定的时序,协议,仲裁和定时。支持标准和快速两种模式,同时与SMBus 2.0兼容.

  1. 主要特性
  1. 并行总线/I2C总线协议转换器
  2. 多主机功能:同一接口即可做主设备也可做从设备
  3. I2C主设备功能
  • 产生时钟
  • 产生起始和停止信号
  1. I2C从设备功能
  • 可编程的I2C地址检测
  • 可响应2个从地址的双地址能力
  • 停止位检测
  1. 产生和检测7位/10位地址和广播呼叫
  2. 支持不同的通讯速度
  • 标准速度(高至100KHZ)
  • 快速(高至400KHZ)
  1. 状态标志
  • 发送器/接收器模式标志
  • 字节发送结束标志
  • I2C总线忙标志
  1. 错误标志
  • 主模式时的时钟丢失
  • 地址/数据传输后的应答(ACK)错误
  • 检测到起始和停止错位
  • 禁止拉长时钟功能后的上溢或下溢
  1. 2个中断向量
  • 1个中断用于地址/数据通讯成功
  • 1个中断用于出错
  1. 可选的拉长时钟功能
  2. 具单字节缓冲器的DMA
  1. 通信过程

主模式时,I2C接口启动数据传输并产生时钟信号。串行数据传输总是以起始条件开始和停止条件结束。主模式时,由软件控制产生起始条件和停止条件。

从模式时,I2C接口能识别它自己的地址(7位或10位)和广播呼叫地址。软件控制开启或禁止广播呼叫地址的识别。

数据和地址按8位/字节进行传输,高位在前。跟在起始条件后面的第一,二个字节是地址(7位模式为1个字节,10位模式为2个字节)。地址只在主模式发送。

在一个字节传输的8个时钟后的第9个时钟期间,接收器必须回送一个应答位(ACK)给发生器。

  1. EEPROM

CAT24WC16是CATALYST公司生产的串行电可擦除的可编程存储器。其内部共有128页,每一页为16字节,每一字节为8位。CAT24WC16以一个字节为一个存储单元,共有2K个存储单元。因此任一存储单元的地址为11位(A0~A11),地址范围为0x00~0x7FF(2K地址范围)。

CAT24WC16的特性如下:

  1. 1.8~6.0V工作电压范围。
  2. 存储容量为16KB.
  3. 16字节页写缓冲器。
  4. 与400KHZ的I2C总线兼容。
  5. 符合双向数据传输协议。
  6. 数据保存时间长达100年,具有硬件写保护和软件数据保护功能
  7. 自动定时擦写周期

引脚说明:

引脚名称

功能

功能描述

VCC GND

电源,地

为芯片提供3.3V电源

A0 A1 A2

地址选择

在串行总线结构中,最多可以连接8个CAT24WC16芯片,则用A0,A1,A2设置地址以示区别 A0 A1 A2 悬空为0

WP

写保护

此引脚接地允许写操作,接VCC被禁止

SCL

时钟线

串行时钟输入

SDA

数据线

双向串行数据输入/输出

5、硬件电路

  1. 软件代码

/********************************************************************

* 说明 :通过I2C总线实现对EEPROM的读写操作

/*******************************************************************

本实验使用CAT24WC16:

        CAT24WC16是CATALSYT公司生产的串行电可擦除的可编程存储器。其内部共有128页,每一页

为16字节,每一个字节8位。CAT24WC16以一个字节为一个存储单元,共有2K个存储单元。因此任一

存储单位地址为11位(A0~A11),地址范围为0x00~0x7FF(2K地址范围)。

*******************************************************************/

#include"stm32f10x_lib.h"

#include"IIC.h"

#define EEPROM_ADDRESS      0xA0

#define      I2C2_SLAVE_ADDRESS7  0xA0

#define I2C_Speed      200000

#define I2C_PageSize  16

void I2C_Configuration(void)

{

        GPIO_InitTypeDef      GPIO_InitStructure;

        I2C_InitTypeDef I2C_InitStructure;

       RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB , ENABLE);

       RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);

        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11;

        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;

        GPIO_Init(GPIOB,&GPIO_InitStructure);

        /*  I2C Configuration */

        I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;      //设置I2C为I2C模式

        I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;    //I2C快速模式

        I2C_InitStructure.I2C_OwnAddress1 = I2C2_SLAVE_ADDRESS7;

        I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;      //使能应答

        I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;

        I2C_InitStructure.I2C_ClockSpeed = I2C_Speed;

        /*   I2C Peripheral Enable*/

        I2C_Cmd(I2C2,ENABLE);

        I2C_Init(I2C2,&I2C_InitStructure);

}

void I2C2_Init(void)

{

        I2C_Configuration();  

}

void I2C_ByteWrite(u8 *pBuffer,u8 WriteAddr)

{      

        I2C_WaitEepromStandbyState();                                                

        /* [1]Send Start Condition  发送起始信号*/

        I2C_GenerateSTART(I2C2,ENABLE);

        /* [2]Test On EV5 and clear it  起始信号已发送并清除该事件 */

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_MODE_SELECT));

        /* [3]Send EEPROM address for write  发送器件地址*/

        I2C_Send7bitAddress(I2C2,EEPROM_ADDRESS,I2C_Direction_Transmitter);

        /* [4]Test on Ev6 and clear it 地址发送结束 */

while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));

        /* [5]Send EEPROM's internal address to  write 发送器件内部写入地址 */

        I2C_SendData(I2C2,WriteAddr);

        /* [6]Test on EV8 _1 and clear it 移位寄存器空 */

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_BYTE_TRANSMITTED));

        /* [7]Send the byte to be writeen 发送数据*/

        I2C_SendData(I2C2,*pBuffer);

        /* [8]Test on EV8 and clear it 发送缓冲区空*/

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_BYTE_TRANSMITTED));

        /* [9]Send STOP condition 发送停止信号 */

        I2C_GenerateSTOP(I2C2,ENABLE);

}

void I2C_PageWrite(u8 *pBuffer,u8 WriteAddr,u8 NumByteToWrite)

{

        I2C_WaitEepromStandbyState();

        /*[1]Send START condition 发送起始条件*/

        I2C_GenerateSTART(I2C2,ENABLE);

        /*[2]Test on EV5 and clear it 起始信号发送是否成功*/

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_MODE_SELECT));

        /*[3]Send EEPROM address for write 发送器件地址*/

        I2C_Send7bitAddress(I2C2,EEPROM_ADDRESS,I2C_Direction_Transmitter);

        /*[4]Test on EV6 and clear it  发送器件地址是否成功*/

while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));

        /*[5]Send EEPROM'S internal address to write to 发送数据的写入首地址*/

        I2C_SendData(I2C2,WriteAddr);

                

        /*[6]Test on EV8 and clear it  发送内部地址是否成功*/

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_BYTE_TRANSMITTED));

        /*[7]Send data to Written 发送数据*/

          while(NumByteToWrite--)

           {

                       /*Send the current byte 发送当前一个字节*/

                       I2C_SendData(I2C2,*pBuffer);

                        /* Point to the next byte to be written 地址++*/

                          pBuffer++;

                         /*Test on EV8 and clear it 发送缓冲区是否为空*/                                     while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_BYTE_TRANSMITTED));

          }

        /*[8]Send STOP condition 发送停止信号*/

        I2C_GenerateSTOP(I2C2,ENABLE);

}

 void I2C_BufferWrite(u8 *pBuffer,u8 WriteAddr,u16 NumByteToWrite)

 {

        u8 NumOfPage = 0, NumOfSingle = 0, Addr = 0, count = 0;

       Addr = WriteAddr % I2C_PageSize;

       count = I2C_PageSize - Addr;

       NumOfPage =  NumByteToWrite / I2C_PageSize;

       NumOfSingle = NumByteToWrite % I2C_PageSize;

        I2C_WaitEepromStandbyState();

  /* If WriteAddr is I2C_PageSize aligned  */

  if(Addr == 0)

  {

    /* If NumByteToWrite < I2C_PageSize */

    if(NumOfPage == 0)

    {

      I2C_PageWrite(pBuffer, WriteAddr, NumOfSingle);

      I2C_WaitEepromStandbyState();

    }

    /* If NumByteToWrite > I2C_PageSize */

    else 

    {

      while(NumOfPage--)

      {

        I2C_PageWrite(pBuffer, WriteAddr, I2C_PageSize);

    I2C_WaitEepromStandbyState();

        WriteAddr +=  I2C_PageSize;

        pBuffer += I2C_PageSize;

      }

      if(NumOfSingle!=0)

      {

        I2C_PageWrite(pBuffer, WriteAddr, NumOfSingle);

        I2C_WaitEepromStandbyState();

      }

    }

  }

  /* If WriteAddr is not I2C_PageSize aligned  */

  else

  {

    /* If NumByteToWrite < I2C_PageSize */

    if(NumOfPage== 0)

    {

      I2C_PageWrite(pBuffer, WriteAddr, NumOfSingle);

      I2C_WaitEepromStandbyState();

    }

    /* If NumByteToWrite > I2C_PageSize */

    else

    {

      NumByteToWrite -= count;

      NumOfPage =  NumByteToWrite / I2C_PageSize;

      NumOfSingle = NumByteToWrite % I2C_PageSize;     

     

      if(count != 0)

      { 

        I2C_PageWrite(pBuffer, WriteAddr, count);

        I2C_WaitEepromStandbyState();

        WriteAddr += count;

        pBuffer += count;

      }

     

      while(NumOfPage--)

      {

        I2C_PageWrite(pBuffer, WriteAddr, I2C_PageSize);

        I2C_WaitEepromStandbyState();

        WriteAddr +=  I2C_PageSize;

        pBuffer += I2C_PageSize; 

      }

      if(NumOfSingle != 0)

      {

        I2C_PageWrite(pBuffer, WriteAddr, NumOfSingle);

        I2C_WaitEepromStandbyState();

      }

    }

  }         

 }

void I2C_WaitEepromStandbyState(void)

{

        vu16 SR1_Tmp = 0;

  do

  {

    /* Send START condition */

    I2C_GenerateSTART(I2C2, ENABLE);

    /* Read I2C1 SR1 register */

    SR1_Tmp = I2C_ReadRegister(I2C2, I2C_Register_SR1);

    /* Send EEPROM address for write */

    I2C_Send7bitAddress(I2C2, EEPROM_ADDRESS, I2C_Direction_Transmitter);

  }while(!(I2C_ReadRegister(I2C2, I2C_Register_SR1) & 0x0002));

 

  /* Clear AF flag */

  I2C_ClearFlag(I2C2, I2C_FLAG_AF);      

}

void I2C_BufferRead(u8 *pBuffer,u8 ReadAddr,u16 NumByteToRead)

{

        I2C_WaitEepromStandbyState();

        /*Send START Condition 发送起始信号*/

        I2C_GenerateSTART(I2C2,ENABLE);

        /*Test on EV5 and clear it 检测起始信号是否发送成功*/

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_MODE_SELECT));

        /* In the case of a singel data transfer disable ACK before readint the data*/

        if(NumByteToRead==1)

        {

                 I2C_AcknowledgeConfig(I2C2,DISABLE);//如果NumByteToRead则不需1字节一应答

        }

        /*Send EEPROM ADDRESS for write */

        I2C_Send7bitAddress(I2C2,EEPROM_ADDRESS,I2C_Direction_Transmitter);

        /* Test on EV6 and clear it*/

while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));

        /* Enable I2C*/

        I2C_Cmd(I2C2,ENABLE);

        /* Send EEPROM'S internal address to write to*/

        I2C_SendData(I2C2,ReadAddr);

        /*Test on EV8 and clear it*/

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_BYTE_TRANSMITTED));

        /*Send START condition again*/

        I2C_GenerateSTART(I2C2,ENABLE);

        /*Test on EV5 and clear it*/

        while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_MODE_SELECT));

        /*Send EEPROM address for read*/

        I2C_Send7bitAddress(I2C2,EEPROM_ADDRESS,I2C_Direction_Receiver);

        /*Test on EV6 and clear it*/

while(!I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED));

    /*Read Data*/

        while(NumByteToRead)

        {

                 /*Test on EV7 and clear it*/

                 if(I2C_CheckEvent(I2C2,I2C_EVENT_MASTER_BYTE_RECEIVED))

                 {

                         if(NumByteToRead == 2)                             

                         {

                                  /*Disable Acknowledgement*/

                                  I2C_AcknowledgeConfig(I2C2,DISABLE);   //一般在最后一个字节关闭应答

                         }

                         if(NumByteToRead == 1)

                         {

                                  /*Send STOP condition */  //最后一位要关闭应答,发送停止信号

                                  I2C_GenerateSTOP(I2C2,ENABLE);

                         }

                         /*Read a byte from the EEPROM*/

                         *pBuffer = I2C_ReceiveData(I2C2);

                         /*Point to the next location where the byte read will be saved*/

                         pBuffer++;

                         /*Decrement the read bytes counter*/

                         NumByteToRead--;

                 }

        }

        /*Enable Acknowledgement to be ready for anotherreception*/

   I2C_AcknowledgeConfig(I2C2,ENABLE);                //允许再次应答           

}

这篇关于STM32单片机实战开发笔记-I2C通讯总线【wulianjishu666】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/965163

相关文章

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边