Python氮氧甲烷乙烷乙烯丙烯气体和固体热力学模型计算

本文主要是介绍Python氮氧甲烷乙烷乙烯丙烯气体和固体热力学模型计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 🎯固体和粒子:计算二态系统、简谐振子和爱因斯坦固体的内能和比热,比较爱因斯坦固体和德拜固体。模拟多个粒子的一维和二维随机游走,在数值上确认方差的线性趋势,模拟多个粒子的梯度下降,模拟双井的梯度下降。
  2. 🎯混合物:🖊建立理想气体及其混合物和多相纯物质的属性模型 。
  3. 🎯计算给定条件下的气体数值:🖊氮给定条件下的焦耳-汤姆逊系数 | 🖊气态氧流等熵效率的比功和出口气体温度 | 🖊液态水流量泵的冷却负荷和轴功率 | 🖊甲烷与十二烷合并流温度 | 🖊制冷剂经饱和蒸气压缩后的出口压力 | 🖊液氨储存罐安全体积 | 🖊氮气流过阀门哪一部分变成液体 | 🖊二氧化碳和氧气合流绝热压缩和等温压缩的压缩功率 | 🖊乙烯经两阀门膨胀后的温度 | 🖊蒸馏塔中塔压下降时泄漏率会如何变化 | 🖊丙烯储存容器加热后初始压力和最终温度 | 🖊氧气流被压缩机压缩后,压缩机功率和氧气出口温度 | 🖊热力循环水经过恒压加热、等熵膨胀、恒压冷凝和等熵压缩后的热效率 | 🖊计算甲烷焦耳-汤姆逊系数 | 🖊氨被压缩后,每摩尔压缩机的负荷和出口温度 | 🖊蒸汽压缩循环模拟。
  4. 🎯Python和C++物理计算热力学 | 🎯Python物理差分方程解​

🍇Python水波纹偏微分方程

有一个不可否认的事实:波一直在我们周围。 无论是通过电磁辐射、空气中传播的声音,还是由一滴水引起的涟漪,波绝对无处不在。 尽管其形式多种多样,但在所有波浪中都适用的一件事是控制它们的严格物理规则。 在数学上,所有这些物理规则都浓缩为一个简单的微分方程之一:波动方程。
∂ 2 u ∂ t 2 = c 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 ) \frac{\partial^2 u}{\partial t^2}=c^2\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}\right) t22u=c2(x22u+y22u)
波动方程告诉我们任何波如何在空间中传播并随时间演化,它为我们提供了函数 u(t, x, y),该函数给出了任意时间内任意点 (x, y) 处的波的高度 t。 本质上,如果你告诉波动方程,你把一个球扔进池塘,它会告诉你球产生的涟漪如何随着时间的推移而发展,并允许你预测由此引起的水的变化。 就像你告诉波动方程你尽可能大声尖叫一样,它会告诉你你创建的声波将如何传播并与环境相互作用。 总而言之,通过求解波动方程,我们将能够轻松模拟我们的纹波。

想象一下,两个人最初紧紧地握着一根绳子(红色),然后一个人快速上下移动手,在绳子上释放出波浪。在波穿过这条绳子后拍一张快照,我们想弄清楚它将如何随着时间的推移继续演化。 为了举例说明,我们假设一根无重力的无摩擦绳索。 为了开始解决这个问题,我们首先定义一些变量。

绳索在位置 x 和时间 t 处的高度将被称为函数 u(t, x) 的值。 考虑到这一点,我们要考虑什么可能会导致绳索随着时间的推移而发生变化。 由于我们确定不存在重力或摩擦力,因此作用在绳子上的唯一力就是张力,我们可以想象,张力在绳子的最小和最大高度处最大。

本质上,这是对凹度的陈述,因为张力在沿着绳索的高弯曲点处达到最高,并且随着远离这些点而减弱。 这里最终可以确定的是,在绳索上的任何给定点,它所承受的张力与其凹度成正比。 由于微积分告诉我们函数的凹性是由其在空间中的二阶导数定义的,因此我们可以将其表述为:
F tension  = k ∂ 2 u ∂ x 2 F_{\text {tension }}=k \frac{\partial^2 u}{\partial x^2} Ftension =kx22u
其中 k 是一个简单的比例常数。 现在我们必须找到一种方法,将力用 u 表示,并将其转化为我们可以解决和使用的东西。 研究牛顿第二定律,它告诉我们 F = ma,允许快速替换,结果为:
m a = k ∂ 2 u ∂ x 2 m a=k \frac{\partial^2 u}{\partial x^2} ma=kx22u
其中 m 是该点的质量,a 是加速度,u 是高度,k 是比例常数。 正如物理学告诉我们的那样,任何处理位置的函数的加速度只是其相对于时间的二阶导数,这意味着我们可以将方程重新定义为:
∂ 2 u ∂ t 2 = k m ∂ 2 u ∂ x 2 \frac{\partial^2 u}{\partial t^2}=\frac{k}{m} \frac{\partial^2 u}{\partial x^2} t22u=mkx22u
离散化波动方程
∂ 2 u ∂ t 2 = c 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 ) \frac{\partial^2 u}{\partial t^2}=c^2\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}\right) t22u=c2(x22u+y22u)
在代码中,网格域将如下所示:

Lx = 10 
Nx = 80 
Ly = 10 
Ny = 80 x_vec = numpy.linspace(0, Lx, Nx) 
dx = x_vec[2] - x_vec[1] y_vec = numpy.linspace(0, Ly, Ny)
dy = y_vec[2] - y_vec[1] 

dt 可以选择,这就是对我有用的数字,c 保持为 1 以保持方程简单。 dt 越小越好,因为它将导致更准确但更慢的模拟。

dt = .025 
Nt = 4000 
c = 1 
u = numpy.zeros([Nt, len(x), len(y)])

如前所述,我们希望在池的中心出现扰动(中心为 (nx/2, ny/2)),因此 t-dt 和 t 的初始条件如下所示:

u[0, Nx // 2, Ny // 2] = numpy.sin(0) 
u[1, Nx // 2, Ny // 2] = numpy.sin(1/10) 

最后,要解决所有问题,我们要做的就是迭代时间并将所有值代入离散方程,从而得到:

for t in range(1, Nt-1):for x in range(1, Nx-1):for y in range(1, Ny-1):if (t < 100):u[t, Nx // 2, Ny // 2] = numpy.sin(t / 10)u[t+1, x, y] = c**2 * dt**2 * ( ((u[t, x+1, y] - 2*u[t, x, y] + u[t, x-1, y])/(dx**2)) + ((u[t, x, y+1] - 2*u[t, x, y] + u[t, x, y-1])/(dy**2)) ) + 2*u[t, x, y] - u[t-1, x, y]

现在您已经通过求解波动方程正式模拟了水波纹!只需迭代计算值并在代码中为每个步骤及时绘制一个曲面:

fig = pyplot.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y = numpy.meshgrid(x_vec, y_vec)
for t in range(0, Nt):surf = ax.plot_surface(X, Y, u[t], color='b', shade=True,linewidth=0, antialiased=False)ax.view_init(elev=45)ax.set_zlim(-.0001, 2.4)pyplot.axis('off')pyplot.pause(.0001)pyplot.cla()

参阅一:计算思维

参阅二:亚图跨际

这篇关于Python氮氧甲烷乙烷乙烯丙烯气体和固体热力学模型计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/964613

相关文章

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in