深度学习论文: XFeat: Accelerated Features for Lightweight Image Matching

本文主要是介绍深度学习论文: XFeat: Accelerated Features for Lightweight Image Matching,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习论文: XFeat: Accelerated Features for Lightweight Image Matching
XFeat: Accelerated Features for Lightweight Image Matching
PDF: https://arxiv.org/pdf/2404.19174
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

为了降低计算成本并保持竞争性的准确性,本项工作带来了以下三大核心贡献:

(1)提出了一种创新的轻量级卷积神经网络(CNN)架构,这种架构能在资源有限的平台上高效运行,并且适用于要求高吞吐量或计算效率的下游任务。其特点在于无需进行耗时的硬件特定优化。此外,XFeat作为一种灵活的解决方案,能够轻松替换现有的轻量级手工解决方案、昂贵的深度模型以及轻量级深度模型,特别在视觉定位和相机姿态估计等下游任务中展现出显著优势。

(2)设计了一个简洁而可学习的关键点检测分支,该分支不仅速度快,而且特别适用于小型特征提取器骨干网络。通过视觉定位、相机姿态估计和单应性注册等应用场景,我们验证了其高效性和实用性。

(3)还提出了一种独特的匹配细化模块,该模块能够从粗略的半密集匹配中精准地获取像素级偏移。与现有技术相比,XFeat不仅依赖局部描述符本身,而且无需高分辨率特征,从而显著降低了计算成本。
在这里插入图片描述

2 XFeat: Accelerated Features

XFeat提取一个关键点热图K,一个紧凑的64-D密集描述符映射F,和一个可靠性热图R。它通过早期下采样和浅层卷积,然后在后续编码器中进行更深的卷积以实现无与伦比的速度。与典型方法相反,它将关键点检测分离成一个独立的分支,使用1×1的卷积在一个8×8的张量块变换图像上进行快速处理。
在这里插入图片描述

2-1 Featherweight Network Backbone

在卷积神经网络中,为了减少计算成本,一种常见策略是在初始卷积层使用较少的通道数,然后随着层数增加逐步加倍通道数。然而,在局部特征提取任务中,这种策略的效果并不如在低分辨率任务(例如图像分类和目标检测)中那么有效。这是因为在局部特征提取中,网络需要处理更大的图像分辨率,因此这种增加通道数的方法会导致计算瓶颈。
为了解决这个问题,提出了一种新的策略:在初始卷积层尽可能减少通道数,并随着空间分辨率的降低,不是加倍而是增加三倍的通道数,直到达到足够的通道数(如128)。这种策略有效地重新分配了网络的卷积深度,减少了早期层的计算负载,并优化了网络的整体容量。
在这里插入图片描述
网络结构由称为基本层的块组成,每个块包含2D卷积、ReLU激活函数、批量归一化和步长为2的卷积层。backbone包含六个这样的块,按顺序减半分辨率并增加深度:{4, 8, 24, 64, 64, 128},并包含一个融合块以整合多分辨率特征。通过从C=4通道开始,在最终编码器块中增加到C=128通道,实现了在H/32×W/32空间分辨率下的良好的精度和速度平衡。

2-2 Local Feature Extraction

利用骨干网络提取局部特征并执行密集匹配。

Descriptor head: 使用特征金字塔策略,通过连续卷积块逐步降低分辨率,增加感受野,同时合并不同尺度的特征到H/8×W/8×64,然后进行逐元素求和。最后,使用由三个基本层组成的卷积融合块将表示结合成最终的特征表示 F,另外使用一个卷积块来回归可靠性图 R。

Keypoint head: SuperPoint 中使用的策略提供了一种最快的提取像素级关键点的方法。它使用最终编码器中的特征,以原始图像分辨率的1/8,并通过从特征嵌入中对关键点的坐标在展平的8×8网格中进行分类,来提取像素级关键点。XFeat采用了类似于SuperPoint的方法,但引入了一个专门的并行分支来专注于低级图像结构的关键点检测。通过在单个神经网络骨干内联合训练描述符和关键点回归器,显著降低了紧凑型CNN架构的半密集匹配性能。将输入图像表示为一个由8×8像素组成的2D网格,每个网格单元,我们将每个单元重塑为64维特征。这种表示在保持单个单元内的空间粒度的同时,利用快速的1×1卷积来回归关键点坐标。经过四层卷积,我们获得了一个关键点嵌入 K,它编码了单元内关键点分布的logits,并且将关键点分类为64个可能位置之一(训练过程增加一个dustbin用来表示找不到关键点的情况,推理过程中去除dustbin)。

Dense matching: 该模块学习通过仅考虑原始粗糙级别特征中原始空间分辨率的1/8处的最近邻对来预测像素级偏移,从而显着节省内存和计算。

  • 首先,通过根据可靠性分数 R 选择前 K 个图像区域并将其缓存以供将来匹配,从而控制内存和计算占用。
  • 其次,提出了一个简单轻量的多层感知器(MLP)来执行粗到细的匹配,而无需高分辨率特征图,使我们能够在资源受限的环境中进行半密集匹配。
  • 给定两个匹配特征,MLP预测偏移,以在原始分辨率下实现正确的像素级匹配。

在这里插入图片描述
整个流程通过端到端训练,确保在紧凑的嵌入空间内保留细粒度的空间细节,同时优化匹配性能。

3 Experiments

在这里插入图片描述

这篇关于深度学习论文: XFeat: Accelerated Features for Lightweight Image Matching的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/964365

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实