深度学习论文: XFeat: Accelerated Features for Lightweight Image Matching

本文主要是介绍深度学习论文: XFeat: Accelerated Features for Lightweight Image Matching,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习论文: XFeat: Accelerated Features for Lightweight Image Matching
XFeat: Accelerated Features for Lightweight Image Matching
PDF: https://arxiv.org/pdf/2404.19174
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

为了降低计算成本并保持竞争性的准确性,本项工作带来了以下三大核心贡献:

(1)提出了一种创新的轻量级卷积神经网络(CNN)架构,这种架构能在资源有限的平台上高效运行,并且适用于要求高吞吐量或计算效率的下游任务。其特点在于无需进行耗时的硬件特定优化。此外,XFeat作为一种灵活的解决方案,能够轻松替换现有的轻量级手工解决方案、昂贵的深度模型以及轻量级深度模型,特别在视觉定位和相机姿态估计等下游任务中展现出显著优势。

(2)设计了一个简洁而可学习的关键点检测分支,该分支不仅速度快,而且特别适用于小型特征提取器骨干网络。通过视觉定位、相机姿态估计和单应性注册等应用场景,我们验证了其高效性和实用性。

(3)还提出了一种独特的匹配细化模块,该模块能够从粗略的半密集匹配中精准地获取像素级偏移。与现有技术相比,XFeat不仅依赖局部描述符本身,而且无需高分辨率特征,从而显著降低了计算成本。
在这里插入图片描述

2 XFeat: Accelerated Features

XFeat提取一个关键点热图K,一个紧凑的64-D密集描述符映射F,和一个可靠性热图R。它通过早期下采样和浅层卷积,然后在后续编码器中进行更深的卷积以实现无与伦比的速度。与典型方法相反,它将关键点检测分离成一个独立的分支,使用1×1的卷积在一个8×8的张量块变换图像上进行快速处理。
在这里插入图片描述

2-1 Featherweight Network Backbone

在卷积神经网络中,为了减少计算成本,一种常见策略是在初始卷积层使用较少的通道数,然后随着层数增加逐步加倍通道数。然而,在局部特征提取任务中,这种策略的效果并不如在低分辨率任务(例如图像分类和目标检测)中那么有效。这是因为在局部特征提取中,网络需要处理更大的图像分辨率,因此这种增加通道数的方法会导致计算瓶颈。
为了解决这个问题,提出了一种新的策略:在初始卷积层尽可能减少通道数,并随着空间分辨率的降低,不是加倍而是增加三倍的通道数,直到达到足够的通道数(如128)。这种策略有效地重新分配了网络的卷积深度,减少了早期层的计算负载,并优化了网络的整体容量。
在这里插入图片描述
网络结构由称为基本层的块组成,每个块包含2D卷积、ReLU激活函数、批量归一化和步长为2的卷积层。backbone包含六个这样的块,按顺序减半分辨率并增加深度:{4, 8, 24, 64, 64, 128},并包含一个融合块以整合多分辨率特征。通过从C=4通道开始,在最终编码器块中增加到C=128通道,实现了在H/32×W/32空间分辨率下的良好的精度和速度平衡。

2-2 Local Feature Extraction

利用骨干网络提取局部特征并执行密集匹配。

Descriptor head: 使用特征金字塔策略,通过连续卷积块逐步降低分辨率,增加感受野,同时合并不同尺度的特征到H/8×W/8×64,然后进行逐元素求和。最后,使用由三个基本层组成的卷积融合块将表示结合成最终的特征表示 F,另外使用一个卷积块来回归可靠性图 R。

Keypoint head: SuperPoint 中使用的策略提供了一种最快的提取像素级关键点的方法。它使用最终编码器中的特征,以原始图像分辨率的1/8,并通过从特征嵌入中对关键点的坐标在展平的8×8网格中进行分类,来提取像素级关键点。XFeat采用了类似于SuperPoint的方法,但引入了一个专门的并行分支来专注于低级图像结构的关键点检测。通过在单个神经网络骨干内联合训练描述符和关键点回归器,显著降低了紧凑型CNN架构的半密集匹配性能。将输入图像表示为一个由8×8像素组成的2D网格,每个网格单元,我们将每个单元重塑为64维特征。这种表示在保持单个单元内的空间粒度的同时,利用快速的1×1卷积来回归关键点坐标。经过四层卷积,我们获得了一个关键点嵌入 K,它编码了单元内关键点分布的logits,并且将关键点分类为64个可能位置之一(训练过程增加一个dustbin用来表示找不到关键点的情况,推理过程中去除dustbin)。

Dense matching: 该模块学习通过仅考虑原始粗糙级别特征中原始空间分辨率的1/8处的最近邻对来预测像素级偏移,从而显着节省内存和计算。

  • 首先,通过根据可靠性分数 R 选择前 K 个图像区域并将其缓存以供将来匹配,从而控制内存和计算占用。
  • 其次,提出了一个简单轻量的多层感知器(MLP)来执行粗到细的匹配,而无需高分辨率特征图,使我们能够在资源受限的环境中进行半密集匹配。
  • 给定两个匹配特征,MLP预测偏移,以在原始分辨率下实现正确的像素级匹配。

在这里插入图片描述
整个流程通过端到端训练,确保在紧凑的嵌入空间内保留细粒度的空间细节,同时优化匹配性能。

3 Experiments

在这里插入图片描述

这篇关于深度学习论文: XFeat: Accelerated Features for Lightweight Image Matching的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/964365

相关文章

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学