深度学习论文: XFeat: Accelerated Features for Lightweight Image Matching

本文主要是介绍深度学习论文: XFeat: Accelerated Features for Lightweight Image Matching,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习论文: XFeat: Accelerated Features for Lightweight Image Matching
XFeat: Accelerated Features for Lightweight Image Matching
PDF: https://arxiv.org/pdf/2404.19174
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

为了降低计算成本并保持竞争性的准确性,本项工作带来了以下三大核心贡献:

(1)提出了一种创新的轻量级卷积神经网络(CNN)架构,这种架构能在资源有限的平台上高效运行,并且适用于要求高吞吐量或计算效率的下游任务。其特点在于无需进行耗时的硬件特定优化。此外,XFeat作为一种灵活的解决方案,能够轻松替换现有的轻量级手工解决方案、昂贵的深度模型以及轻量级深度模型,特别在视觉定位和相机姿态估计等下游任务中展现出显著优势。

(2)设计了一个简洁而可学习的关键点检测分支,该分支不仅速度快,而且特别适用于小型特征提取器骨干网络。通过视觉定位、相机姿态估计和单应性注册等应用场景,我们验证了其高效性和实用性。

(3)还提出了一种独特的匹配细化模块,该模块能够从粗略的半密集匹配中精准地获取像素级偏移。与现有技术相比,XFeat不仅依赖局部描述符本身,而且无需高分辨率特征,从而显著降低了计算成本。
在这里插入图片描述

2 XFeat: Accelerated Features

XFeat提取一个关键点热图K,一个紧凑的64-D密集描述符映射F,和一个可靠性热图R。它通过早期下采样和浅层卷积,然后在后续编码器中进行更深的卷积以实现无与伦比的速度。与典型方法相反,它将关键点检测分离成一个独立的分支,使用1×1的卷积在一个8×8的张量块变换图像上进行快速处理。
在这里插入图片描述

2-1 Featherweight Network Backbone

在卷积神经网络中,为了减少计算成本,一种常见策略是在初始卷积层使用较少的通道数,然后随着层数增加逐步加倍通道数。然而,在局部特征提取任务中,这种策略的效果并不如在低分辨率任务(例如图像分类和目标检测)中那么有效。这是因为在局部特征提取中,网络需要处理更大的图像分辨率,因此这种增加通道数的方法会导致计算瓶颈。
为了解决这个问题,提出了一种新的策略:在初始卷积层尽可能减少通道数,并随着空间分辨率的降低,不是加倍而是增加三倍的通道数,直到达到足够的通道数(如128)。这种策略有效地重新分配了网络的卷积深度,减少了早期层的计算负载,并优化了网络的整体容量。
在这里插入图片描述
网络结构由称为基本层的块组成,每个块包含2D卷积、ReLU激活函数、批量归一化和步长为2的卷积层。backbone包含六个这样的块,按顺序减半分辨率并增加深度:{4, 8, 24, 64, 64, 128},并包含一个融合块以整合多分辨率特征。通过从C=4通道开始,在最终编码器块中增加到C=128通道,实现了在H/32×W/32空间分辨率下的良好的精度和速度平衡。

2-2 Local Feature Extraction

利用骨干网络提取局部特征并执行密集匹配。

Descriptor head: 使用特征金字塔策略,通过连续卷积块逐步降低分辨率,增加感受野,同时合并不同尺度的特征到H/8×W/8×64,然后进行逐元素求和。最后,使用由三个基本层组成的卷积融合块将表示结合成最终的特征表示 F,另外使用一个卷积块来回归可靠性图 R。

Keypoint head: SuperPoint 中使用的策略提供了一种最快的提取像素级关键点的方法。它使用最终编码器中的特征,以原始图像分辨率的1/8,并通过从特征嵌入中对关键点的坐标在展平的8×8网格中进行分类,来提取像素级关键点。XFeat采用了类似于SuperPoint的方法,但引入了一个专门的并行分支来专注于低级图像结构的关键点检测。通过在单个神经网络骨干内联合训练描述符和关键点回归器,显著降低了紧凑型CNN架构的半密集匹配性能。将输入图像表示为一个由8×8像素组成的2D网格,每个网格单元,我们将每个单元重塑为64维特征。这种表示在保持单个单元内的空间粒度的同时,利用快速的1×1卷积来回归关键点坐标。经过四层卷积,我们获得了一个关键点嵌入 K,它编码了单元内关键点分布的logits,并且将关键点分类为64个可能位置之一(训练过程增加一个dustbin用来表示找不到关键点的情况,推理过程中去除dustbin)。

Dense matching: 该模块学习通过仅考虑原始粗糙级别特征中原始空间分辨率的1/8处的最近邻对来预测像素级偏移,从而显着节省内存和计算。

  • 首先,通过根据可靠性分数 R 选择前 K 个图像区域并将其缓存以供将来匹配,从而控制内存和计算占用。
  • 其次,提出了一个简单轻量的多层感知器(MLP)来执行粗到细的匹配,而无需高分辨率特征图,使我们能够在资源受限的环境中进行半密集匹配。
  • 给定两个匹配特征,MLP预测偏移,以在原始分辨率下实现正确的像素级匹配。

在这里插入图片描述
整个流程通过端到端训练,确保在紧凑的嵌入空间内保留细粒度的空间细节,同时优化匹配性能。

3 Experiments

在这里插入图片描述

这篇关于深度学习论文: XFeat: Accelerated Features for Lightweight Image Matching的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/964365

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499