万物互联-AI边缘计算赋能腾讯无人驾驶车

2024-05-06 09:36

本文主要是介绍万物互联-AI边缘计算赋能腾讯无人驾驶车,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为把握智能交通系统发展机遇,探索未来城市智能化交通体系,今年3月,腾讯无人驾驶汽车正式落地深圳智能网联交通示范区;该项目将以智能网联测试为基础,以构建自动驾驶生态和未来交通体系为导向,围绕"车、路、云、网、图"五大要素,结合5G、自动驾驶、人工智能等新一代技术,布局建设面向未来智能网联汽车研发、测试的全生态体系,建成国际领先的智能网联交通系统测试基地。这是深圳坪山区政府,深交投,腾讯三方联合打造的示范区无人驾驶项目。作为腾讯在边缘计算领域的重要供应商之一,为深圳智能网联交通测试项目提供了领先的边缘计算产品支持。

目前随着5G、人工智能、大数据等技术的不断突破和应用。无人驾驶作为人工智能的主要应用场景之一,已成为众多企业重点关注的领域。在无人驾驶技术大力发展的时代,智慧交通与车联网的高效协同是实现安全无人驾驶的基石。传统驾驶使用人脑和人眼在道路上驾驶,而无人驾驶汽车依赖人工智能、边缘计算、雷达、监控设备和全球定位系统等协同工作;帮助无人驾驶设备做出正确且及时的反应。

无人驾驶汽车通过车载传感器来感知车辆周围的交通环境,并通过感知所获得的道路、车辆位置和障碍物信息,进行车辆转向、速度、形式路线的判断和执行。为了满足其严苛的行驶条件,其关键是选用一款工业级边缘计算产品,实现对感知单元数据的快速处理,以很好地实现安全无人驾驶的目的。

BRAV-7520作为一款专为智能AI边缘计算而设计的产品,为腾讯无人驾驶车辆提供强大支撑!无人驾驶的硬件系统,分为感知、决策、控制三个主导部分,而定位、地图、预测则是辅助部分,具体硬件组成如C-V2X车路云解决方案架构图。

C-V2X车路云解决方案架构

车辆自身会感知到车的状态信息,如速度、转角以及横滚,俯仰、航向等,还有路面环境感知,如激光雷达、摄像头、毫米波雷达和定位信息。C-V2X的路侧系统和云端平台能提供超视距功能——当车上了路,很难发现超传感器范围的信息,通过C-V2X设备会发送和接受相关信息,车会接收到前方交通的情况。

边缘计算产品7302在MEC中的应用实物图

目前L4和L5级自动驾驶的车载计算单元MDC是采用CPU+GPU的双重架构方案,OBU通信器采用FPGA架构。MDC(BRAV-7520-WP)通过交换机连接车载激光雷达、毫米波雷达和摄像头等车载传感器,经过深度学习推理计算,进行数据结构化融合;同时直连OBU通讯器后,可实现向上接的C-V2X网络感知到路侧和云端信息,而向下是接的CAN总线。通过CAN bus连接车载线控系统,线控系统实现车辆的制动、转向、发动机启停、变速箱和车门窗控制,还有声音、图像和振动的警告系统的自动控制。为高度无人驾驶提供强大支撑!

边缘计算产品7520-WP在MDC中的应用实景图

边缘计算7302和7520-WP产品特性

CPU和GPU独立风道散热设计

Intel™Kabylake-S/Sky lake-S Core I3/I5/I7 CPU

2*DDR4 2400/2133MHz SODIMM内存,最大32GB

NVIDIA Turing架构MXM GPU模块用于深度学习实现镭视融合数据结构化

1*DP,1*HDMI和1*VGA三核显,3*DP和1*HDMI四独显

3/7*LAN,4/6*USB3.0,3*USB2.0,4*COM,16*DIO,Audio

2*Mini PCIe(PCIe+USB),1*M.2 2242 B-Key

1*mSATA, 1/2*2.5" SATA3驱动架,  支持Raid0,1

支持Intel iVpro技术,实现远程管理,提高产品可维护性

高能效比架构方案,加上优化创新的热设计和结构设计,形成尺寸适中合适更多安装场景

DC 6~48V宽压供电、 短路、过压、过流和欠压保护

Intel™ XeonRE or 9th/8th Gen Core TM processor超高清双4K,三独立显示2*DP,1*VGA

Wp机型支持RTX-3080高算力GPU做深度学习实现镭视融合数据结构化

CAN bus总线,实现系统和车载线控系统的对接

3*Gig-LAN(可iATM),可选多路万兆光口卡双PCle标准插槽,支持多种高速扩展功能卡·多路存储

2*SATA3.0,1*M.2 M-Key,支持NVMe.CPU无风扇,AI/GPU卡高效风冷散热设计

整机结构和安装方式均按减震设计方案进行,适合车载环境

整机最大输出功率600W,可作单路350W

GPU卡或双路75W AI加速卡的供电支持

DC 9-55V宽压直流供电适合车载电池供电

这篇关于万物互联-AI边缘计算赋能腾讯无人驾驶车的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/964020

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <