初学python记录:力扣1235. 规划兼职工作

2024-05-05 23:44

本文主要是介绍初学python记录:力扣1235. 规划兼职工作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目:

你打算利用空闲时间来做兼职工作赚些零花钱。

这里有 n 份兼职工作,每份工作预计从 startTime[i] 开始到 endTime[i] 结束,报酬为 profit[i]

给你一份兼职工作表,包含开始时间 startTime,结束时间 endTime 和预计报酬 profit 三个数组,请你计算并返回可以获得的最大报酬。

注意,时间上出现重叠的 2 份工作不能同时进行。

如果你选择的工作在时间 X 结束,那么你可以立刻进行在时间 X 开始的下一份工作。

提示:

  • 1 <= startTime.length == endTime.length == profit.length <= 5 * 10^4
  • 1 <= startTime[i] < endTime[i] <= 10^9
  • 1 <= profit[i] <= 10^4

思考:

解法一——动态规划(以时间作为划分)

设f(x)为在时间为x时能获得的最大报酬,

设正好在x结束的工作开始于时间m,报酬为p,那么

f(x) = max(f(x-1), f(m_1)+p_1, f(m_2)+p_2, ......) 

代码如下:

class Solution:def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:# 动态规划:dp[i]表示在时间为i时能获得的最大报酬# f(x) = max(f(x-1), f(m)+p)   设正好在x结束的所有工作开始于m,报酬为pn = max(endTime)dp = [0 for _ in range(n+1)]for i in range(2, n+1):candidate = []  # 记录所有"f(m)+p"for index, value in enumerate(endTime):if value == i:candidate.append(dp[startTime[index]] + profit[index])if candidate:dp[i] = max(dp[i - 1], max(candidate))else:dp[i] = dp[i - 1]return dp[n]

超时,卡在第 21 / 35 个例子:

 

优化 

可以将遍历endtime数组找到刚好在x结束的所有工作这一步提到最前面,避免每次计算f(x)时都要遍历一次。代码如下:

from collections import defaultdict
class Solution:def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:# 动态规划:dp[i]表示在时间为i时能获得的最大报酬# f(x) = max(f(x-1), f(m)+p)   设正好在x结束的所有工作开始于m,报酬为pn = max(endTime)dp = [0 for _ in range(n+1)]end_index = defaultdict(list)   # 键为结束时间,值为这份工作的索引for index, time in enumerate(endTime):end_index[time].append(index)for i in range(2, n+1):if not end_index[i]:dp[i] = dp[i - 1]else:candidate = []  # 记录所有"f(m)+p"for index in end_index[i]:candidate.append(dp[startTime[index]] + profit[index])dp[i] = max(dp[i - 1], max(candidate))return dp[n]

时间上确实加快了,但是卡在一个特殊的测试例子上,超内存了:

原因是只有四项工作待选,但是用时间划分的话,dp数组的长度有1000000001,显然在这种情况下仍然按时间划分造成了内存极大浪费。

解法二——动态规划(以工作作为划分)

那么换一个思路,将所有工作按结束时间排序,以是否选择每一项工作作为划分。

设f(x)表示在第x个结束的工作结束时,能获得的最大报酬,即 选择工作x 或者 不选择工作x 这两种决策得到的报酬更大值。公式如下,其中y是满足endtime(y) <= starttime(x) 条件的工作索引最大值,如果不存在这样的y,则f(y)取0:

 f(x) = max(f(x-1), f(y)+profit(x))

为了减少耗时,这里找y使用二分查找。代码如下:

from collections import defaultdict
class Solution:def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:# 动态规划:f(x)表示在第x个结束的工作结束时,能获得的最大报酬,即 选择工作x 或者 不选择工作x 的报酬更大值# 公式如下,其中y是满足endtime(y) <= starttime(x) 条件的工作索引最大值,如果不存在这样的y,则f(y)取0# f(x) = max(f(x-1), f(y)+profit(x))# 将所有工作按结束时间排序combined_list = list(zip(startTime, endTime, profit))combined_list = sorted(combined_list, key = lambda x : x[1])n = len(profit)dp = [-1 for _ in range(n)]dp[0] = combined_list[0][2]for x in range(1, n):# 找到工作y:满足endtime(y) <= starttime(x) 条件的最大值left = 0right = x - 1f_y = 0while left <= right:mid = (left + right) // 2if combined_list[mid][1] <= combined_list[x][0]:f_y = dp[mid]left = mid + 1else:right = mid - 1# f(x) = max(f(x-1), f(y)+profit(x))dp[x] = max(dp[x-1], f_y + combined_list[x][2])return dp[n-1]

提交通过,耶耶耶: 

 

这篇关于初学python记录:力扣1235. 规划兼职工作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/962979

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(