Vitis HLS 学习笔记--HLS流水线基本用法

2024-05-05 11:04

本文主要是介绍Vitis HLS 学习笔记--HLS流水线基本用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1. 简介

2. 示例

2.1 对内层循环打拍

2.2 对外层循环打拍

2.3 优化数组访问后打拍

3. 总结


1. 简介

本文介绍pipeline的基本用法。pipeline是一种用于提高硬件设计性能的技术。本文介绍了pipeline在累加计算函数中的应用。通过优化内外层循环和数组访问,显著提高了函数的时序性能,实现更高效的硬件设计。

2. 示例

这个程序定义了一个名为func的函数,接受一个长度为20的ap_int类型的数组A,数组中每个元素都是一个长度为5的ap_int类型。函数的目标是计算一个累加值并返回。

函数通过两个嵌套的循环对数组A进行遍历:

  • 外部循环(LOOP_I)遍历数组A的所有元素。
  • 内部循环(LOOP_J)对每个元素执行一个操作。
  • 在内部循环中,数组A的第j个元素与外部循环的迭代次数i相乘,结果累加到一个名为acc的静态ap_int类型变量中。
  • 最终,函数返回累加值acc。

2.1 对内层循环打拍

#include "ap_int.h"ap_int<20> func(ap_int<5> A[20]) {int i, j;static ap_int<20> acc;LOOP_I:for (i = 0; i < 20; i++) {LOOP_J:for (j = 0; j < 20; j++) {
#pragma HLS PIPELINEacc += A[j] * i;}}return acc;
}

C综合后,可以看到时序报告,函数func的Latency=405。循环II=1,Trip Count=400。

+ Performance & Resource Estimates: PS: '+' for module; 'o' for loop; '*' for dataflow+------------------+------+------+---------+-----------+----------+---------+------+----------+------+---------+----------+-----------+-----+|      Modules     | Issue|      | Latency |  Latency  | Iteration|         | Trip |          |      |         |          |           |     ||      & Loops     | Type | Slack| (cycles)|    (ns)   |  Latency | Interval| Count| Pipelined| BRAM |   DSP   |    FF    |    LUT    | URAM|+------------------+------+------+---------+-----------+----------+---------+------+----------+------+---------+----------+-----------+-----+|+ func            |     -|  4.92|      405|  4.050e+03|         -|      406|     -|        no|     -|  1 (~0%)|  68 (~0%)|  171 (~0%)|    -|| o LOOP_I_LOOP_J  |     -|  7.30|      403|  4.030e+03|         5|        1|   400|       yes|     -|        -|         -|          -|    -|+------------------+------+------+---------+-----------+----------+---------+------+----------+------+---------+----------+-----------+-----+

可以理解,两层循环20*20=400,II=1,所以Trip Count=400。符合我们的预期。

2.2 对外层循环打拍

#include "ap_int.h"ap_int<20> func(ap_int<5> A[20]) {int i, j;static ap_int<20> acc;LOOP_I:for (i = 0; i < 20; i++) {
#pragma HLS PIPELINELOOP_J:for (j = 0; j < 20; j++) {acc += A[j] * i;}}return acc;
}

 C综合后,可以看到时序报告,func的Latency=13,II=14。

+ Performance & Resource Estimates: PS: '+' for module; 'o' for loop; '*' for dataflow+--------+------+------+---------+---------+----------+---------+------+----------+------+---------+----------+-----------+-----+| Modules| Issue|      | Latency | Latency | Iteration|         | Trip |          |      |         |          |           |     || & Loops| Type | Slack| (cycles)|   (ns)  |  Latency | Interval| Count| Pipelined| BRAM |   DSP   |    FF    |    LUT    | URAM|+--------+------+------+---------+---------+----------+---------+------+----------+------+---------+----------+-----------+-----+|+ func  |     -|  0.82|       13|  130.000|         -|       14|     -|        no|     -|  1 (~0%)|  93 (~0%)|  444 (~0%)|    -|+--------+------+------+---------+---------+----------+---------+------+----------+------+---------+----------+-----------+-----+

通过观察Schedule可以发现, 数组A被默认绑定为ap_memory,实现形式是双端口ram,每个周期可读取2个元素,共计10个周期读取完毕,额外有4个周期进行了乘法运算和回写。所以II=14。

此结果并不符合预期,理论上,内层循环应该展开,外层循环被流水线打拍,func的Latency=20才对。

尝试使用 ARRAY_PARTITION 优化数组 A 访问。

#include "ap_int.h"ap_int<20> func(ap_int<5> A[20]) {
#pragma HLS ARRAY_PARTITION dim=0 type=complete variable=Aint i, j;static ap_int<20> acc;LOOP_I:for (i = 0; i < 20; i++) {
#pragma HLS PIPELINELOOP_J:for (j = 0; j < 20; j++) {acc += A[j] * i;}}return acc;
}

 C综合后的结果如下:

+ Performance & Resource Estimates: PS: '+' for module; 'o' for loop; '*' for dataflow+--------+------+------+---------+--------+----------+---------+------+----------+------+---------+----------+-----------+-----+| Modules| Issue|      | Latency | Latency| Iteration|         | Trip |          |      |         |          |           |     || & Loops| Type | Slack| (cycles)|  (ns)  |  Latency | Interval| Count| Pipelined| BRAM |   DSP   |    FF    |    LUT    | URAM|+--------+------+------+---------+--------+----------+---------+------+----------+------+---------+----------+-----------+-----+|+ func  |     -|  1.50|        3|  30.000|         -|        4|     -|        no|     -|  1 (~0%)|  24 (~0%)|  278 (~0%)|    -|+--------+------+------+---------+--------+----------+---------+------+----------+------+---------+----------+-----------+-----+

其中II=4,我无法理解。从Schedule Viewer来看,似乎是乘法运算和回写占用了4个周期。

此结果的原因未知。后续研究之后再补充吧。 

2.3 优化数组访问后打拍

#include "ap_int.h"ap_int<20> func(ap_int<5> A[20]) {
#pragma HLS ARRAY_PARTITION dim=0 type=complete variable=Aint i, j;static ap_int<20> acc;#pragma HLS PIPELINE
LOOP_I:for (i = 0; i < 20; i++) {LOOP_J:for (j = 0; j < 20; j++) {acc += A[j] * i;}}return acc;
}

为了最大化榨取并行处理能力,我们做了“最疯狂”的优化:

  • 使用 ARRAY_PARTITION 对数组A进行分区,将其完全分割为独立元素,每个周期可以访问所有元素。
  • PIPELINE 在函数提内,HLS 工具会展开所有循环,即双层循环会在一个周期内完成。
+ Performance & Resource Estimates: PS: '+' for module; 'o' for loop; '*' for dataflow+--------+------+------+---------+--------+----------+---------+------+----------+------+---------+-----------+-----------+-----+| Modules| Issue|      | Latency | Latency| Iteration|         | Trip |          |      |         |           |           |     || & Loops| Type | Slack| (cycles)|  (ns)  |  Latency | Interval| Count| Pipelined| BRAM |   DSP   |     FF    |    LUT    | URAM|+--------+------+------+---------+--------+----------+---------+------+----------+------+---------+-----------+-----------+-----+|+ func  |    II|  1.50|        3|  30.000|         -|        1|     -|       yes|     -|  1 (~0%)|  240 (~0%)|  649 (~0%)|    -|+--------+------+------+---------+--------+----------+---------+------+----------+------+---------+-----------+-----------+-----+

查看C综合结果,符合我们的预期。

 

3. 总结

本文介绍了使用pipeline进行硬件优化的基本方法,并通过示例展示了不同优化方式的性能影响。针对累加计算函数,我们通过内外层循环的pipeline优化和数组访问优化,显著提高了时序性能,从405个周期降至3个周期。这些优化方法可有效应用于其他硬件设计中,提高性能和效率。

这篇关于Vitis HLS 学习笔记--HLS流水线基本用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961553

相关文章

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

oracle中exists和not exists用法举例详解

《oracle中exists和notexists用法举例详解》:本文主要介绍oracle中exists和notexists用法的相关资料,EXISTS用于检测子查询是否返回任何行,而NOTE... 目录基本概念:举例语法pub_name总结 exists (sql 返回结果集为真)not exists (s

Springboot中Jackson用法详解

《Springboot中Jackson用法详解》Springboot自带默认json解析Jackson,可以在不引入其他json解析包情况下,解析json字段,下面我们就来聊聊Springboot中J... 目录前言Jackson用法将对象解析为json字符串将json解析为对象将json文件转换为json

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

基本知识点

1、c++的输入加上ios::sync_with_stdio(false);  等价于 c的输入,读取速度会加快(但是在字符串的题里面和容易出现问题) 2、lower_bound()和upper_bound() iterator lower_bound( const key_type &key ): 返回一个迭代器,指向键值>= key的第一个元素。 iterator upper_bou

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss