NYOJ119士兵杀敌(三)RMQ问题之ST…

2024-05-05 05:58
文章标签 问题 st rmq 杀敌 士兵 nyoj119

本文主要是介绍NYOJ119士兵杀敌(三)RMQ问题之ST…,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目地址
题目大意:求一段区间内的最大值和最小值的差值,查询次数非常大。
第一次接触RMQ类型的题目,在百度百科科普了一下。 RMQ问题
RMQ (Range Minimum/MaximumQuery)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就是说,RMQ问题是指求区间最值的问题。
ST算法:
  首先是预处理,用一个DP解决。设a是要求 区间 最值的 数列 ,f[i,j]表示从第i个数起连续2^j个数中的最大值。例如数列32 4 5 6 8 1 2 9 7,f[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。f[1,2]=5,f[1,3]=8,f[2,0]=2,f[2,1]=4……从这里可以看出f[i,0]其实就等于a[i]。这样,DP的状态、初值都已经有了,剩下的就是 状态转移方程 。我们把f[i,j](j≥1)平均分成两段(因为j≥1时,f[i,j]一定是偶数个数字),从i到i+2^(j-1)-1为一段,i+2^(j-1)到i+2^j-1为一段(长度都为2^(j-1))。用上例说明,当i=1,j=3时就是3,2,4,5和6,8,1,2这两段。f就是这两段的最大值中的最大值。于是我们得到了动规方程F[i,j]=max(F[i,j-1],F[i+2^(j-1),j-1])。
接下来是得出最值,也许你想不到计算出f有什么用处,一般要想计算max还是要O(logn),甚至O(n)。但有一个很好的办法,做到了O(1)。还是分开来。如在上例中我们要求区间[2,8]的最大值,就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我们可以直接由f[2,2]和f[5,2]得到。扩展到一般情况,就是把区间[l,r]分成两个长度为2^n的区间(保证有f对应)。直接给出表达式:
k:=trunc(ln(r-l+1)/ln(2));
ans:=max(F[l,k],F[r-2^k+1,k]);
这样就计算了从l开始,长度为2^k的区间和从r-2^k+1开始长度为2^k的区间的最大值(表达式比较繁琐,细节问题如加1减1需要仔细考虑),二者中的较大者就是整个区间[l,r]上的最大值。
其实我个人觉得这个和树状数组十分的相似,树状数组是将数组的和预处理用二叉树存储,这个事将数组区间的最值用二维数组储存罢了。
解题代码:(百度百科的写的非常的经典,就稍微改了一点,直接过了)
#include<stdio.h>
#include<string.h>
#define MN 100008
using namespace std;
int mi[MN][17],mx[MN][17],w[MN];
int n,q;
int max(int a,int b){return a>b?a:b;
}
int min(int a,int b){return a>b?a:b;
}
void rmqinit()//初始化数组
{int i,j,m;for(i=1;i<=n;i++){mi[i][0]=mx[i][0]=w[i];}m=(int) floor(log2((double)n));for(i=1;i<=m;i++){for(j=n;j>=1;j--){mx[j][i]=mx[j][i-1];if(j+(1<<(i-1))<=n)mx[j][i]=max(mx[j][i],mx[j+(1<<(i-1))][i-1]);mi[j][i]=mi[j][i-1];if(j+(1<<(i-1)<=n))mi[j][i]=min(mi[j][i],mi[j+(1<<(i-1))][i-1]);}}
}
int rmqmin(int l,int r)//l,r区间的最小值
{int m=(int)floor(log2(double(r-l+1)));returnmin(mi[l][m],mi[r-(1<<m)+1][m]);
}int rmqmax(int l,int r)
{intm=(int)floor(log2(double(r-l+1)));returnmax(mx[l][m],mx[r-(1<<m)+1][m]);
}int main()
{scanf("%d%d",&n,&q);for(int i=1;i<=n;i++)scanf("%d",&w[i]);rmqinit();int l,r;for(int i=1;i<=q;i++){scanf("%d%d",&l,&r);printf("%d\n",rmqmax(l,r)-rmqmin(l,r));}return 0;
}



                                     不懂可以私信。

这篇关于NYOJ119士兵杀敌(三)RMQ问题之ST…的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960937

相关文章

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给