C++中的reverse_iterator迭代器结构设计

2024-05-04 22:44

本文主要是介绍C++中的reverse_iterator迭代器结构设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

reverse_iterator迭代器结构设计

reverse_iterator迭代器基本结构设计

operator*()函数

operator++()函数

operator->()函数

operator!=()函数

rbegin()函数

rend()函数

operator--()函数

operator==()函数

测试代码

const_reverse_iterator迭代器设计

reverse_iterator迭代器结构设计思路改进


reverse_iterator迭代器结构设计

前面的list类以及vector类设计了正向迭代器,现在考虑设计反向迭代器,常规的设计思路为单独为反向迭代器建一个新类,这个类中所有的函数全部重新设计,这种思路可取但是并不高效,可以考虑下面的设计思路:

前面了解到了容器适配器,那么是否也可以把正向迭代器设置为反向迭代器的容器适配器从而实现反向迭代器的效果

对于此时的反向迭代器类设计即为如下:

以list类为例

reverse_iterator迭代器基本结构设计

//反向迭代器template<classIterator>class_list_reverse_iterator{typedef_list_reverse_iterator self;//使用正向迭代器构造反向迭代器_list_reverse_iterator(Iterator it):_it(it){}​private:Iterator_it;};

operator*()函数

首先是对于operator*()函数来说,解引用操作符获得的结果即为指针当前指向中的内容,而在正向迭代器中,解引用操作符也是同样的作用,所以此处可以复用正向迭代器的解引用操作符,但是此处是Iterator类对象,所以不能使用传统的直接对内置类型解引用的方式,但是可以考虑直接调用Iterator类中的operator*()函数

对于返回值来说,可以考虑和设计const版本的正向迭代器思路一致,使用模板参数区分传递T&T*

所以修改原来的类定义为:

//反向迭代器template<class Iterator, class Ref, class Ptr>class _list_reverse_iterator{typedef _list_reverse_iterator self;//使用正向迭代器构造反向迭代器_list_reverse_iterator(Iterator it):_it(it){}​private:Iterator _it;};

此时的operator*()函数即为如下设计:

//operator*()函数Ref operator*(){return _it.operator*();}

operator++()函数

对于前置++运算符来说,不同于正向迭代器,因为正向迭代器++是从第一个有效数据节点开始一直到头节点结束,而对于反向迭代器来说,其++是从最后一个有效数据节点开始向前一直到头节点结束,如下图所示:

但是可以考虑通过正向迭代器适配出反向迭代器,具体思路如下:

begin()放置在最后一个有效数据节点的位置,即end()-1的位置,将end()放在头节点的位置即可

所以,operator++()函数可以设计为

//operator++()函数
self& operator++()
{--_it;return *this;
}

operator->()函数

operator*()函数一样,调用Iterator中的operator->()函数即可

//operator->()函数Ptr operator->(){return _it.operator->();}

operator!=()函数

同正向迭代器中的设计思路一致

//operator!=()函数
bool operator!=(self& s)
{return _it != s._it;
}

rbegin()函数

//rbegin()函数——反向——非const版本
reverse_iterator rbegin()
{//因为正向迭代器中没有重载-,所以使用--代替return reverse_iterator(--end());
}

rend()函数

//rend()函数——反向——非const版本
reverse_iterator rend()
{return reverse_iterator(end());
}

operator--()函数

//operator--()函数
self& operator--()
{++_it;return *this;
}

operator==()函数

//operator==()函数
bool operator==(const self& s)
{return _it == s._it;
}

测试代码

此时基本的反向迭代器框架已经搭建完成,下面是测试代码:

void test_reverse_iterator()
{sim_list::list<int> ls;ls.push_back(1);ls.push_back(2);ls.push_back(3);ls.push_back(4);ls.push_back(5);sim_list::list<int>::reverse_iterator rit = ls.rbegin();while (rit != ls.rend()){cout << *rit << " ";++rit;}
}

const_reverse_iterator迭代器设计

对于const_reverse_iterator设计来说,不需要更改reverse_iterator迭代器的结构,只需要在list类中重定义一个const版本即可

typedef _list_reverse_iterator<iterator, T&, T*> reverse_iterator;// 反向迭代器——非const版本
typedef _list_reverse_iterator<iterator, const T&, const T*> const_reverse_iterator // 反向迭代器——const版本

并且将rbegin()rend()分别重载一个const版本

//rbegin()函数——反向——const版本
reverse_iterator rbegin() const
{//因为正向迭代器中没有重载-,所以使用--代替//注意end()此处是常量,但是此处是调用了operator--(),所以可以调用(编译器对const类型能调用普通函数的优化),如果是内置指针类型则必须写成end()-1return reverse_iterator(--end());
}//rend()函数——反向——const版本
reverse_iterator rend() const
{return reverse_iterator(end());
}

reverse_iterator迭代器结构设计思路改进

前面在设计reverse_iterator迭代器时,直接考虑的rbegin()函数的位置在最后一个有效节点的位置,而rend()在则在end()的位置,这样的思路并没有错误,但是参照SGI版本中的设计:

rbegin()rend()设计

可以看出,SGI版本在设计rbegin()rend()时考虑到和begin()end()形成了一种对称关系,如下图所示:

那么此时SGI版本中的反向迭代器是如何处理operator*()函数的

配合rbegin()rend()遍历思路如下:

取出上一个有效节点的数据,因为rbegin()在头节点的位置,所以先取出最后一个节点的数据,迭代器--操作到最后一个有效节点,一直到rend()位置结束

参考完SGI版本的迭代器设计,此时可以对上面的设计进行优化为SGI版本

//operator*()函数
Ref operator*()
{Iterator cur = _it;//如果不实现--,也可以用-1来代替return *(--cur);
}//rbegin()函数——反向——非const版本
reverse_iterator rbegin()
{//因为正向迭代器中没有重载-,所以使用--代替return reverse_iterator(end());
}//rend()函数——反向——非const版本
reverse_iterator rend()
{return reverse_iterator(begin());
}//rbegin()函数——反向——const版本
reverse_iterator rbegin() const
{//因为正向迭代器中没有重载-,所以使用--代替return reverse_iterator(end());
}//rend()函数——反向——const版本
reverse_iterator rend() const
{return reverse_iterator(begin());
}

此时对于operator->()函数来说,则需要换一个实现思路:直接取当前operator*()结果的地址

//operator->()函数
Ptr operator->()
{return &(operator*());
}

这篇关于C++中的reverse_iterator迭代器结构设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960254

相关文章

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++