使用PyTorch从头实现Transformer

2024-05-04 16:04

本文主要是介绍使用PyTorch从头实现Transformer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

  • 本文使用Pytorch从头实现Transformer,原论文Attention is all you need paper,最佳解读博客,学习视频
  • GitHub项目地址Some-Paper-CN。本项目是译者在学习长时间序列预测、CV、NLP和机器学习过程中精读的一些论文,并对其进行了中文翻译。还有部分最佳示例教程
  • 如果有帮助到大家,请帮忙点亮Star,也是对译者莫大的鼓励,谢谢啦~

SelfAttention

  • 整篇论文中,最核心的部分就是SelfAttention部分,SelfAttention模块架构图如下。
    请添加图片描述

规范化公式:
A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Attention(Q,K,V) = softmax(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V

class SelfAttention(nn.Module):def __init__(self, embed_size, heads):super(SelfAttention, self).__init__()self.embed_size = embed_sizeself.heads = headsself.head_dim = embed_size // headsself.values = nn.Linear(self.head_dim, self.head_dim, bias=False)self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)self.fc_out = nn.Linear(heads * self.head_dim, embed_size)def forward(self, values, keys, query, mask):# batch_sizeN = query.shape[0]value_len, keys_len, query_len = values.shape[1], keys.shape[1], query.shape[1]values = values.reshape(N, value_len, self.heads, self.head_dim)keys = keys.reshape(N, keys_len, self.heads, self.head_dim)queries = query.reshape(N, query_len, self.heads, self.head_dim)# values, keys, queries shape:(N, seq_len, heads, head_dim)values = self.values(values)keys = self.keys(keys)queries = self.queries(queries)energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])# queries shape:(N, query_len, heads, heads_dim)# keys shape:(N, key_len, heads, heads_dim)# energy shape:(N, heads, query_len, key_len)if mask is not None:energy = energy.masked_fill(mask == 0 ,float("-1e20"))attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3)# attention shape:(N, heads, seq_len, seq_len)out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(N, query_len, self.heads*self.head_dim)# attention shape:(N, heads, query_len, key_len)# values shape:(N, values_len, heads, head_dim)# after einsum (N, query_len, heads, head_dim) then flatten lash two dimensionsout = self.fc_out(out)return out
  • 请注意values keysqueryLinear层是不带偏置的!
  • 上述代码中,较难理解的是torch.einsum(),爱因斯坦求和约定,nqhd,nkhd->nhqk可以理解为维度是 ( n , q , h , d ) (n,q,h,d) (n,q,h,d)的张量与 ( n , k , h , d ) (n,k,h,d) (n,k,h,d)的张量沿着维度 d d d相乘,得到维度 ( n , q , d , h ) (n,q,d,h) (n,q,d,h)重新排列后变成 ( n , h , q , k ) (n,h,q,k) (n,h,q,k)
  • 传入mask矩阵是因为每个句子的长度不一样,为了保证维度相同,在长度不足的句子后面使用padding补齐,而padding是不用计算损失的,所以需要mask告诉模型哪些位置需要计算损失。被mask遮掩的地方,被赋予无限小的值,这样在softmax以后概率就几乎为0了。
  • mask这个地方后面也会写到,如果不理解的话,先有这个概念,后面看完代码就会理解了。

TransformerBlock

  • 实现完SelfAttention,开始实现基本模块TransformerBlock,架构图如下。

请添加图片描述

class TransformerBlock(nn.Module):def __init__(self, embed_size, heads, dropout, forward_expansion):super(TransformerBlock, self).__init__()self.attention = SelfAttention(embed_size, heads)self.norm1 = nn.LayerNorm(embed_size)self.norm2 = nn.LayerNorm(embed_size)self.feed_forward = nn.Sequential(nn.Linear(embed_size, forward_expansion * embed_size),nn.ReLU(),nn.Linear(forward_expansion * embed_size, embed_size))self.dropout = nn.Dropout(dropout)def forward(self, value, key, query, mask):attention = self.attention(value, key, query, mask)# attention shape:(N, seq_len, emb_dim)x = self.dropout(self.norm1(attention + query))forward = self.feed_forward(x)out = self.dropout(self.norm2(forward + x))return out
  • Feed Forward部分由两层带偏置的Linear层和ReLU激活函数

  • 注意,Norm层是LayerNorm层,不是BatchNorm层。原因主要有:

    • 在进行BatchNorm操作时,同一个batch中的所有样本都会被考虑在内。这意味着一个样本的输出可能会受到同一批次其他样本的影响。然而,我们在处理文本数据时,通常希望每个样本(在此例中,是一个句子或一个句子段落)都是独立的。因此,LayerNorm是一个更好的选择,因为它只对单个样本进行操作。
    • 文本通常不是固定长度的,这就意味着每个batch的大小可能会有所不同。BatchNorm需要固定大小的batch才能正常工作,LayerNorm在这点上更为灵活。
  • forward_expansion是为了扩展embedding的维度,使Feed Forward包含更多参数量。

Encoder

  • 实现完TransformerBlock,就可以实现模型的Encoder部分,模块架构图如下。

请添加图片描述

class Encoder(nn.Module):def __init__(self,src_vocab_size,embed_size,num_layers,heads,device,forward_expansion,dropout,max_length):super(Encoder, self).__init__()self.embed_size = embed_sizeself.device = deviceself.word_embedding = nn.Embedding(src_vocab_size, embed_size)self.position_embedding = nn.Embedding(max_length, embed_size)self.layers = nn.ModuleList([TransformerBlock(embed_size,heads,dropout=dropout,forward_expansion=forward_expansion) for _ in range(num_layers)])self.dropout = nn.Dropout(dropout)def forward(self, x, mask):N, seq_length = x.shapepositions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)# positions shape:(N, seq_len)out = self.dropout(self.word_embedding(x) + self.position_embedding(positions))# out shape:(N, seq_len, emb_dim)for layer in self.layers:out = layer(out, out, out, mask)return out
  • 为了更好的理解positions并没有按照论文中使用sincos构造,但这一部分并不困难,后面大家有兴趣可以进行替换。

  • positions是为句子的每个字从0开始编号,假设有2个句子,第一个句子有3个字,第二个句子有4个字,即positions = [[0,1,2],[0,1,2,3]]

  • positionsx进入embedding层后相加,然后进入dropout

  • 因为TransformerBlock可能有多个串联,所以使用ModuleList包起来

  • 注意残差连接部分的操作。

DecoderBlock

  • 实现完Encoder部分,整个模型就已经完成一半了,接下来实现Decoder基本单元DecoderBlock,模块架构图如下。

请添加图片描述

class DecoderBlock(nn.Module):def __init__(self, embed_size, heads, forward_expansion, dropout, device):super(DecoderBlock, self).__init__()self.attention = SelfAttention(embed_size, heads)self.norm = nn.LayerNorm(embed_size)self.transformer_block = TransformerBlock(embed_size, heads, dropout, forward_expansion)self.dropout = nn.Dropout(dropout)def forward(self, x, value, key, src_mask, trg_mask):attention = self.attention(x, x, x, trg_mask)query = self.dropout(self.norm(attention + x))out = self.transformer_block(value, key, query, src_mask)return out
  • 注意!这里有两个Attention模块,首先输入x要进入Masked Attention得到query,然后与Encoder部分的输出组成新的v,k,q
  • 第二部分是基本单元transformer_block,可以直接调用。
  • 注意残差连接部分即可。

Decoder

  • 实现完Decoder基本单元DecoderBlock后,就可以正式开始实现Decoder部分了,模块架构图如下。

请添加图片描述

class Decoder(nn.Module):def __init__(self,trg_vocab_size,embed_size,num_layers,heads,forward_expansion,dropout,device,max_length,):super(Decoder, self).__init__()self.device = deviceself.word_embedding = nn.Embedding(trg_vocab_size, embed_size)self.position_embedding = nn.Embedding(max_length, embed_size)self.layers = nn.ModuleList([DecoderBlock(embed_size, heads, forward_expansion, dropout, device)for _ in range(num_layers)])self.fc_out = nn.Linear(embed_size, trg_vocab_size)self.dropout = nn.Dropout(dropout)def forward(self, x, enc_out, src_mask, trg_mask):N, seq_length = x.shapepositions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)x = self.dropout(self.word_embedding(x) + self.position_embedding(positions))for layer in self.layers:x = layer(x, enc_out, enc_out, src_mask, trg_mask)out = self.fc_out(x)return out
  • Decoder部分的embedding部分和Encoder部分差不多,word_embeddingposition_embedding相加进入dropout层。
  • 基本单元DecoderBlock会重复多次,用ModuleList包裹。
  • enc_outEncoder部分的输出,变成了valuekey

Transformer

  • 在实现完EncoderDecoder后,就可以实现整个Transformer结构了,架构图如下。
    请添加图片描述
class Transformer(nn.Module):def __init__(self,src_vocab_size,trg_vocab_size,src_pad_idx,trg_pad_idx,embed_size=256,num_layers=6,forward_expansion=4,heads=8,dropout=0,device='cpu',max_length=64):super(Transformer, self).__init__()self.encoder = Encoder(src_vocab_size,embed_size,num_layers,heads,device,forward_expansion,dropout,max_length)self.decoder = Decoder(trg_vocab_size,embed_size,num_layers,heads,forward_expansion,dropout,device,max_length)self.src_pad_idx = src_pad_idxself.trg_pad_idx = trg_pad_idxself.device = devicedef mask_src_mask(self, src):src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)# src_mask shape:(N, 1, 1, src_len)return src_mask.to(self.device)def mask_trg_mask(self, trg):N, trg_len = trg.shapetrg_mask = torch.tril(torch.ones((trg_len, trg_len))).expand(N, 1, trg_len, trg_len)# trg_mask shape:(N, 1, 1, trg_len)return trg_mask.to(self.device)def forward(self, src, trg):src_mask = self.mask_src_mask(src)trg_mask = self.mask_trg_mask(trg)enc_src = self.encoder(src, src_mask)# enc_src shape:(N, seq_len, emb_dim)out = self.decoder(trg, enc_src, src_mask, trg_mask)return out
  • 需要注意的是输入的mask构造方法mask_src_mask,和输出的mask构造方法mask_trg_maskmask_src_mask是对输入的padding部分进行maskmask_trg_mask根据输出构建下三角矩阵想象一下,当模型预测第一个字的时候,后面的所有内容都是不可见的,当模型预测第二个字的时候,仅第一个字可见,后面的内容都不可见…

检验

  • 构建完成后,使用一个简单的小例子检验一下模型是否可以正常运行。
if __name__ == "__main__":device = 'cpu'# x shape:(N, seq_len)x = torch.tensor([[1, 5, 6, 4, 3, 9, 5, 2, 0],[1, 8, 7, 3, 4, 5, 6, 7, 2]]).to(device)trg = torch.tensor([[1, 7, 4, 3, 5, 9, 2, 0],[1, 5, 6, 2, 4, 7, 6, 2]]).to(device)src_pad_idx = 0trg_pad_idx = 0src_vocab_size = 10trg_vocab_size = 10model = Transformer(src_vocab_size, trg_vocab_size, src_pad_idx, trg_pad_idx).to(device)out = model(x, trg[:, :-1])print(out.shape)
  • 输出:(2, 7, 10),完整代码放在GitHub项目Some-Paper-CN中。

这篇关于使用PyTorch从头实现Transformer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/959578

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基