常见排序算法巩固附上经典视频教程

2024-05-04 11:48

本文主要是介绍常见排序算法巩固附上经典视频教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

冒泡排序

public static int[] bubbleSort(int[] array) {for (int i = 0; i < array.length; i++) {for (int j = 0; j < array.length-i-1; j++) {if (array[j] > array[j+1]) {int temp = array[j];array[j] = array[j+1];array[j+1] = temp;}}}return array;}
image.png

上面的代码是把每一个进行遍历然后写一个内循环进行啰嗦重复的遍历
选择排序

public static int[] selectSort(int[] array) {for (int i = 0; i < array.length - 1; i++) {//最后一个不需要比较了,for (int j = i+1; j < array.length; j++) {if (array[i] > array[j]) {int temp = array[i];array[i] = array[j];array[j] = temp;}}}return array;}

选择排序的特点是一次从头开始往后面比较,每次循环 头部开始位置就会+1,
冒泡排序不同,冒泡排序是相邻的2个进行比较, 如0和1 的索引值比较完毕之后 1 和 2 比较 ,
插入排序

public static int[] sort(int[] array) {for (int i = 1; i < array.length; i++) {int temp = array[i];int in = i;while (in > 0 && array[in-1] >= temp) {array[in] = array[in-1];in--;}array[in] = temp;}return array;}

快速排序
看官方的脑壳不够用

/*** Sorts the specified range of the array using the given* workspace array slice if possible for merging** @param a the array to be sorted* @param left the index of the first element, inclusive, to be sorted* @param right the index of the last element, inclusive, to be sorted* @param work a workspace array (slice)* @param workBase origin of usable space in work array* @param workLen usable size of work array*/static void sort(long[] a, int left, int right,long[] work, int workBase, int workLen) {// Use Quicksort on small arraysif (right - left < QUICKSORT_THRESHOLD) {sort(a, left, right, true);return;}/** Index run[i] is the start of i-th run* (ascending or descending sequence).*/int[] run = new int[MAX_RUN_COUNT + 1];int count = 0; run[0] = left;// Check if the array is nearly sortedfor (int k = left; k < right; run[count] = k) {if (a[k] < a[k + 1]) { // ascendingwhile (++k <= right && a[k - 1] <= a[k]);} else if (a[k] > a[k + 1]) { // descendingwhile (++k <= right && a[k - 1] >= a[k]);for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {long t = a[lo]; a[lo] = a[hi]; a[hi] = t;}} else { // equalfor (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {if (--m == 0) {sort(a, left, right, true);return;}}}/** The array is not highly structured,* use Quicksort instead of merge sort.*/if (++count == MAX_RUN_COUNT) {sort(a, left, right, true);return;}}// Check special cases// Implementation note: variable "right" is increased by 1.if (run[count] == right++) { // The last run contains one elementrun[++count] = right;} else if (count == 1) { // The array is already sortedreturn;}// Determine alternation base for mergebyte odd = 0;for (int n = 1; (n <<= 1) < count; odd ^= 1);// Use or create temporary array b for merginglong[] b;                 // temp array; alternates with aint ao, bo;              // array offsets from 'left'int blen = right - left; // space needed for bif (work == null || workLen < blen || workBase + blen > work.length) {work = new long[blen];workBase = 0;}if (odd == 0) {System.arraycopy(a, left, work, workBase, blen);b = a;bo = 0;a = work;ao = workBase - left;} else {b = work;ao = 0;bo = workBase - left;}// Mergingfor (int last; count > 1; count = last) {for (int k = (last = 0) + 2; k <= count; k += 2) {int hi = run[k], mi = run[k - 1];for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {b[i + bo] = a[p++ + ao];} else {b[i + bo] = a[q++ + ao];}}run[++last] = hi;}if ((count & 1) != 0) {for (int i = right, lo = run[count - 1]; --i >= lo;b[i + bo] = a[i + ao]);run[++last] = right;}long[] t = a; a = b; b = t;int o = ao; ao = bo; bo = o;}}
image.png

不过原理就是把数据分成两部分进行排序,有一个图非常清晰的,

从上面插入排序代码看上去好像差不多的样子,但是while循环的条件是和当前index-1以及-....都要比外循环index的值才进行不断的内while循环递减替换比较,不满足就不会进行了,所以优点就是处理有序数量较多的时候有优势.

image.png
https://www.cnblogs.com/www-1761735951-com/p/5985952.html http://www.iqiyi.com/w_19rs84lwkl.html http://www.cnblogs.com/ershao/category/823714.html http://v.youku.com/v_show/id_XNDgwMjY5MDQw.html http://yun.itheima.com/course/7.html
快速排序参考 https://www.cnblogs.com/MOBIN/p/4681369.html http://blog.jobbole.com/11745/
选择排序和冒泡排序循环次数是一样的,区别在哪里 冒泡排序是相邻的比较,而选择排序是从0开始依次往后面开始比较然后index+1再依次往后面查找.

这篇关于常见排序算法巩固附上经典视频教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/959133

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

hdu 1285(拓扑排序)

题意: 给各个队间的胜负关系,让排名次,名词相同按从小到大排。 解析: 拓扑排序是应用于有向无回路图(Direct Acyclic Graph,简称DAG)上的一种排序方式,对一个有向无回路图进行拓扑排序后,所有的顶点形成一个序列,对所有边(u,v),满足u 在v 的前面。该序列说明了顶点表示的事件或状态发生的整体顺序。比较经典的是在工程活动上,某些工程完成后,另一些工程才能继续,此时

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int