本文主要是介绍python numpy的tile函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
tile是numpy.lib.shape_base中的函数,作用就是重复某个数组构成一个新的数组,其help帮助信息如下:
Help on function tile in module numpy.lib.shape_base:tile(A, reps)Construct an array by repeating A the number of times given by reps.
也就是将数组A重复reps次,不过特殊的是reps可以是整数,也可以是数组。
对于reps为整数的情况比较好理解,看实际操作,
>>> a=eye(2)
>>> a
array([[1., 0.],[0., 1.]])
>>> b=tile(a,2)
>>> b
array([[1., 0., 1., 0.],[0., 1., 0., 1.]])
>>>
以矩阵为整体复制2次,注意,次数包括一开始的那个,也即是实际复制了一次。并且要注意的是,这时复制是在列向量方向复制。
再看下reps为数组的情况,
>>> a=eye(2)
>>> a
array([[1., 0.],[0., 1.]])
>>> c=tile(a,[1,2])
>>> c
array([[1., 0., 1., 0.],[0., 1., 0., 1.]])
>>> d=tile(a,[3,2])
>>> d
array([[1., 0., 1., 0.],[0., 1., 0., 1.],[1., 0., 1., 0.],[0., 1., 0., 1.],[1., 0., 1., 0.],[0., 1., 0., 1.]])
>>>
因此,当reps为数组时,数组在行向量和列向量方向同时复制。数组第一维作为行向量长度复制次数,数组第二维作为列向量长度复制。
以此类推,当数组为三维数组时如下,其实就是先在二维基础上复制,再以此时整个矩阵为基础,再列向量方向扩展。
>>> a=eye(2)
>>> a
array([[1., 0.],[0., 1.]])
>>> d=tile(a,[3,3,3])
>>> d
array([[[1., 0., 1., 0., 1., 0.],[0., 1., 0., 1., 0., 1.],[1., 0., 1., 0., 1., 0.],[0., 1., 0., 1., 0., 1.],[1., 0., 1., 0., 1., 0.],[0., 1., 0., 1., 0., 1.]],[[1., 0., 1., 0., 1., 0.],[0., 1., 0., 1., 0., 1.],[1., 0., 1., 0., 1., 0.],[0., 1., 0., 1., 0., 1.],[1., 0., 1., 0., 1., 0.],[0., 1., 0., 1., 0., 1.]],[[1., 0., 1., 0., 1., 0.],[0., 1., 0., 1., 0., 1.],[1., 0., 1., 0., 1., 0.],[0., 1., 0., 1., 0., 1.],[1., 0., 1., 0., 1., 0.],[0., 1., 0., 1., 0., 1.]]])
>>> e=tile(a,[3,3,3,3])
>>>
点到为止吧^.^
这篇关于python numpy的tile函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!