密码之AES五种加密模式(CBC、ECB、CTR、OCF、CFB)

2024-05-04 02:58

本文主要是介绍密码之AES五种加密模式(CBC、ECB、CTR、OCF、CFB),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分组密码有五种工作体制:

1.电码本模式(Electronic Codebook Book (ECB));

2.密码分组链接模式(Cipher Block Chaining (CBC));

3.计算器模式(Counter (CTR));

4.密码反馈模式(Cipher FeedBack (CFB));

5.输出反馈模式(Output FeedBack (OFB))。

以下逐一介绍一下:

1.电码本模式(Electronic Codebook Book (ECB)

这种模式是将整个明文分成若干段相同的小段,然后对每一小段进行加密。

 

2.密码分组链接模式(Cipher Block Chaining (CBC))

  这种模式是先将明文切分成若干小段,然后每一小段与初始块或者上一段的密文段进行异或运算后,再与密钥进行加密。

 

3.计算器模式(Counter (CTR))

计算器模式不常见,在CTR模式中, 有一个自增的算子,这个算子用密钥加密之后的输出和明文异或的结果得到密文,相当于一次一密。这种加密方式简单快速,安全可靠,而且可以并行加密,但是在计算器不能维持很长的情况下,密钥只能使用一次。CTR的示意图如下所示:

 

4.密码反馈模式(Cipher FeedBack (CFB))

 

5.输出反馈模式(Output FeedBack (OFB))

这种模式较复杂。

 

以下附上C++源代码:

/** 

*@autho stardust 

*@time 2013-10-10 

*@param 实现AES五种加密模式的测试

 */

 #include <iostream> using namespace std; 

//加密编码过程函数,16位1和0

 int dataLen = 16; //需要加密数据的长度

 int encLen = 4; //加密分段的长度

 int encTable[4] = {1,0,1,0}; //置换表 

int data[16] = {1,0,0,1,0,0,0,1,1,1,1,1,0,0,0,0}; //明文

 int ciphertext[16]; //密文

 //切片加密函数 

void encode(int arr[]) 

{

     for(int i=0;i<encLen;i++)

     { 

         arr[i] = arr[i] ^ encTable[i];

     } 

//电码本模式加密,4位分段 

void ECB(int arr[])

 { 

    //数据明文切片

     int a[4][4];

     int dataCount = 0; //位置变量

     for(int k=0;k<4;k++) 

    { 

        for(int t=0;t<4;t++)

        { 

            a[k][t] = data[dataCount]; 

            dataCount++; 

         } 

     } 

    dataCount = 0;//重置位置变量 

    for(int i=0;i<dataLen;i=i+encLen)

    {

          int r = i/encLen;//行 

          int l = 0;//列 

         int encQue[4]; //编码片段 

         for(int j=0;j<encLen;j++) 

         { encQue[j] = a[r][l]; l++; } 

         encode(encQue); //切片加密 

       //添加到密文表中 

       for(int p=0;p<encLen;p++) 

       { ciphertext[dataCount] = encQue[p]; dataCount++; }

   } 

    cout<<"ECB加密的密文为:"<<endl;

     for(int t1=0;t1<dataLen;t1++) //输出密文

     { if(t1!=0 && t1%4==0) cout<<endl; cout<<ciphertext[t1]<<" "; } 

      cout<<endl; 

      cout<<"---------------------------------------------"<<endl; 

}

      //CBC 

      //密码分组链接模式,4位分段 

     void CCB(int arr[])

    { 

        //数据明文切片 

        int a[4][4]; 

        int dataCount = 0; //位置变量 

        for(int k=0;k<4;k++)

         {

             for(int t=0;t<4;t++)

             { a[k][t] = data[dataCount]; dataCount++; }

         }

         dataCount = 0;//重置位置变量

         int init[4] = {1,1,0,0}; //初始异或运算输入

         //初始异或运算

         for(int i=0;i<dataLen;i=i+encLen)

         { 

                int r = i/encLen;//行

                 int l = 0;//列 

                int encQue[4]; //编码片段 

                //初始化异或运算

                 for(int k=0;k<encLen;k++)

                 { a[r][k] = a[r][k] ^ init[k]; } 

                //与Key加密的单切片 

                for(int j=0;j<encLen;j++) 

                { encQue[j] = a[r][j]; }

                 encode(encQue);

                 //切片加密 

                //添加到密文表中 

                for(int p=0;p<encLen;p++) 

                { ciphertext[dataCount] = encQue[p]; dataCount++; } 

                //变换初始输入 

                for(int t=0;t<encLen;t++)

                 { init[t] = encQue[t]; } 

            }

             cout<<"CCB加密的密文为:"<<endl; 

            for(int t1=0;t1<dataLen;t1++) //输出密文 

            { 

                if(t1!=0 && t1%4==0) 

                cout<<endl; 

                cout<<ciphertext[t1]<<" ";

             } 

            cout<<endl; 

            cout<<"---------------------------------------------"<<endl;

 }

 //CTR

 //计算器模式,4位分段 

void CTR(int arr[])

 {

     //数据明文切片 

    int a[4][4];

     int dataCount = 0; //位置变量

     for(int k=0;k<4;k++)

     { 

        for(int t=0;t<4;t++)

         { a[k][t] = data[dataCount]; dataCount++; }

     } 

    dataCount = 0;//重置位置变量 

    int init[4][4] = {{1,0,0,0},{0,0,0,1},{0,0,1,0},{0,1,0,0}}; //算子表

     int l = 0; //明文切片表列

     //初始异或运算

     for(int i=0;i<dataLen;i=i+encLen)

     { 

         int r = i/encLen;//行

         int encQue[4]; //编码片段

         //将算子切片 

        for(int t=0;t<encLen;t++)

         { encQue[t] = init[r][t]; }

         encode(encQue); //算子与key加密 

        //最后的异或运算 

        for(int k=0;k<encLen;k++)

         { encQue[k] = encQue[k] ^ a[l][k]; }

         l++; 

        //添加到密文表中

         for(int p=0;p<encLen;p++) 

        { ciphertext[dataCount] = encQue[p]; dataCount++; } 

    } 

    cout<<"CTR加密的密文为:"<<endl;

     for(int t1=0;t1<dataLen;t1++) //输出密文

     { 

        if(t1!=0 && t1%4==0) cout<<endl; cout<<ciphertext[t1]<<" ";

     }

     cout<<endl; cout<<"---------------------------------------------"<<endl;

 } 

//CFB

 //密码反馈模式,4位分段 

void CFB(int arr[]) 

    //数据明文切片,切成2 * 8 片 

    int a[8][2]; 

    int dataCount = 0; //位置变量

     for(int k=0;k<8;k++) 

    { 

        for(int t=0;t<2;t++)

         { a[k][t] = data[dataCount]; dataCount++; }

     } 

    dataCount = 0; //恢复初始化设置

     int lv[4] = {1,0,1,1}; //初始设置的位移变量

     int encQue[2]; //K的高两位 

    int k[4]; //K 

    for(int i=0;i<2 * encLen;i++) //外层加密循环 

    { 

        //产生K 

        for(int vk=0;vk<encLen;vk++)

         { k[vk] = lv[vk]; } 

        encode(k); 

        for(int k2=0;k2<2;k2++) 

        { encQue[k2] = k[k2]; }

         //K与数据明文异或产生密文

         for(int j=0;j<2;j++) 

        {

             ciphertext[dataCount] = a[dataCount/2][j] ^ encQue[j];

             dataCount++;

       } //lv左移变换

        lv[0] = lv[2];

         lv[1] = lv[3];

         lv[2] = ciphertext[dataCount-2];

         lv[3] = ciphertext[dataCount-1]; 

    } 

    cout<<"CFB加密的密文为:"<<endl; 

    for(int t1=0;t1<dataLen;t1++) //输出密文 

    { if(t1!=0 && t1%4==0) cout<<endl; cout<<ciphertext[t1]<<" "; } 

    cout<<endl; cout<<"---------------------------------------------"<<endl;

 } 

//OFB

 //输出反馈模式,4位分段 

void OFB(int arr[])

 { 

    //数据明文切片,切成2 * 8 片

     int a[8][2];

     int dataCount = 0; //位置变量 

    for(int k=0;k<8;k++)

     { 

            for(int t=0;t<2;t++) 

            { a[k][t] = data[dataCount]; dataCount++; } 

    } 

    dataCount = 0; //恢复初始化设置

     int lv[4] = {1,0,1,1}; //初始设置的位移变量 

    int encQue[2]; //K的高两位

     int k[4]; //K 

    for(int i=0;i<2 * encLen;i++) //外层加密循环

     {

         //产生K 

        for(int vk=0;vk<encLen;vk++) 

        {

             k[vk] = lv[vk]; 

        } 

        encode(k);

         for(int k2=0;k2<2;k2++) 

        { 

            encQue[k2] = k[k2];

         }

         //K与数据明文异或产生密文 

        for(int j=0;j<2;j++)

         { ciphertext[dataCount] = a[dataCount/2][j] ^ encQue[j]; dataCount++; }

         //lv左移变换 

        lv[0] = lv[2];

         lv[1] = lv[3];

         lv[2] = encQue[0];

         lv[3] = encQue[1]; 

    } 

    cout<<"CFB加密的密文为:"<<endl;

     for(int t1=0;t1<dataLen;t1++) //输出密文 

    { if(t1!=0 && t1%4==0) cout<<endl; cout<<ciphertext[t1]<<" "; } 

    cout<<endl; 

    cout<<"---------------------------------------------"<<endl; 

 

void printData()

 { 

    cout<<"以下示范AES五种加密模式的测试结果:"<<endl; 

    cout<<"---------------------------------------------"<<endl; 

    cout<<"明文为:"<<endl; 

    for(int t1=0;t1<dataLen;t1++) //输出密文 

    { if(t1!=0 && t1%4==0) cout<<endl; cout<<data[t1]<<" "; }

     cout<<endl; 

    cout<<"---------------------------------------------"<<endl;

 }

 int main() 

{

     printData();

     ECB(data); 

    CCB(data); 

    CTR(data);

     CFB(data); 

    OFB(data);

     return 0; 

}


 

这篇关于密码之AES五种加密模式(CBC、ECB、CTR、OCF、CFB)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958211

相关文章

电脑密码怎么设置? 一文读懂电脑密码的详细指南

《电脑密码怎么设置?一文读懂电脑密码的详细指南》为了保护个人隐私和数据安全,设置电脑密码显得尤为重要,那么,如何在电脑上设置密码呢?详细请看下文介绍... 设置电脑密码是保护个人隐私、数据安全以及系统安全的重要措施,下面以Windows 11系统为例,跟大家分享一下设置电脑密码的具体办php法。Windo

数据库oracle用户密码过期查询及解决方案

《数据库oracle用户密码过期查询及解决方案》:本文主要介绍如何处理ORACLE数据库用户密码过期和修改密码期限的问题,包括创建用户、赋予权限、修改密码、解锁用户和设置密码期限,文中通过代码介绍... 目录前言一、创建用户、赋予权限、修改密码、解锁用户和设置期限二、查询用户密码期限和过期后的修改1.查询用

Java中的密码加密方式

《Java中的密码加密方式》文章介绍了Java中使用MD5算法对密码进行加密的方法,以及如何通过加盐和多重加密来提高密码的安全性,MD5是一种不可逆的哈希算法,适合用于存储密码,因为其输出的摘要长度固... 目录Java的密码加密方式密码加密一般的应用方式是总结Java的密码加密方式密码加密【这里采用的

mysql重置root密码的完整步骤(适用于5.7和8.0)

《mysql重置root密码的完整步骤(适用于5.7和8.0)》:本文主要介绍mysql重置root密码的完整步骤,文中描述了如何停止MySQL服务、以管理员身份打开命令行、替换配置文件路径、修改... 目录第一步:先停止mysql服务,一定要停止!方式一:通过命令行关闭mysql服务方式二:通过服务项关闭

使用Python制作一个PDF批量加密工具

《使用Python制作一个PDF批量加密工具》PDF批量加密‌是一种保护PDF文件安全性的方法,通过为多个PDF文件设置相同的密码,防止未经授权的用户访问这些文件,下面我们来看看如何使用Python制... 目录1.简介2.运行效果3.相关源码1.简介一个python写的PDF批量加密工具。PDF批量加密

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

Java 后端接口入参 - 联合前端VUE 使用AES完成入参出参加密解密

加密效果: 解密后的数据就是正常数据: 后端:使用的是spring-cloud框架,在gateway模块进行操作 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>30.0-jre</version></dependency> 编写一个AES加密

模版方法模式template method

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/template-method 超类中定义了一个算法的框架, 允许子类在不修改结构的情况下重写算法的特定步骤。 上层接口有默认实现的方法和子类需要自己实现的方法