Redis系列-2 Redis持久化机制

2024-05-04 02:52
文章标签 redis 系列 持久 化机制

本文主要是介绍Redis系列-2 Redis持久化机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景:

服务器重启后会丢失内存中的全部数据,内存数据库如果没有持久化机制,难以保证数据的可靠性,如Memcached。Redis提供了RDB(基于全量)和AOF(基于增量)两种持久化机制,一方面可以保证数据的可靠性,当服务器意外宕机重启后,Redis从持久化文件中读取数据,可以快速恢复到宕机前的状态;另外,基于持久化文件可以实现数据备份、数据扩展和搭建Redis集群。

1.RDB

RDB持久化当前内存快照的数据,属于全量同步。RDB有两种触发类型: 当Redis客户端执行save命令时,使用Redis主进程进行持久化,会阻塞此期间的用户请求;当Redis客户端执行bgsave命令或者配置文件中save规则触发持久化时,通过创建子进程并将持久化任务委托给子进程,从而不会阻塞Redis主线程。持久化完成后会生成一个持久化文件dump.rdb文件, 文件内容是二进制数据。当RDB开启而AOF关闭,重启服务时,Redis会根据dump.rdb文件恢复内存数据。
save规则可通过redis.conf配置文件或通过命令形式:

# 查看save规则
traffic:0>config get save
1) "save"
2) "900 1 300 10 60 10000"# 清空save规则
traffic:0>config set save ""
"OK"
traffic:0>config get save
1) "save"
2) ""# 新增save规则
traffic:0>config set save "900 1"
"OK"
traffic:0>config get save
1) "save"
2) "900 1"

“save 900 1"持久化规则表示每900秒内有key进行了修改,触发持久化;将save设置为""时,表示关闭RDB。
另外,dir(持久化存放文件路径)和dbfilename(持久化文件名称)是受保护的配置,不可通过config set命令修改。

RDB实现机制

在这里插入图片描述
如上图所示,通过bgsave指令或者save规则(本质也是bgsave指令)触发,Redis主进程会创建一个子进程,将RDB持久化操作委托给子进程处理, 子进程将内存快照写入临时dump.rdb文件,之后替换原有的dump.rdb文件。其中,Redis主进程fork子进程时会阻塞,且内存越大阻塞时间越长。

内存快照
Redis主进程fork子进程时,子进程共享主进程的所有内存信息,如下图所示:
在这里插入图片描述
通过CopyOnWrite技术,Redis数据库信息在内存中仅保存一份:主进程修改数据时,复制一份副本并在副本的基础上进行修改,未修改的部分与之前保持一致。当主进程将内存中0x3b地址的值由4改成400时,有如下变化:
在这里插入图片描述
当主进程对0x3b的数据写操作时,系统的CopyOnWrite机制将复制0x3b数据至0x3f, 并将主进程的内存地址由0x3b切换至0x3f; 主进程对0x3f进行写操作,数据由4修改为40。
需要注意的是,主进程未修改部分内存地址无变化,子进程全部内存地址无变化。因此,子进程被fork后,Redis主进程的数据变化对子进程不可见,子进程保留了被fork瞬间主进程的全部内存信息, 也叫做内存快照。
在这里插入图片描述
子进程将该部分内存快照(0x34,0x38,0x3b)持久化写入dump.rdb文件,而主进程改动的部分(4->400)未被写入RDB文件,改动部分将在下次RDB时持久化,如果下次RDB前Redis服务被重启,可能存在数据丢失的风险。
在这里插入图片描述
绿色部分表示正在持久化的内存数据(RDB子进程的内存快照),黄色部分表示Redis待持久化的部分(Redis主进程修改的部分)。如果快照数据较大,持久化时间较长,待持久化的数据积累越多,此时Redis重启会丢失大量的数据。因此,为保障数据的可靠性,RDB一般与AOF结合使用。

2.AOF

一般而言,POSIX 标准的 I/O 库,因直接使用内核缓冲区(涉及用户态和内核态的来回切换),适合小文件的读写;而封装的C语言标准IO库,使用用户态缓存区(无需切换内核形态),更适合大文件的读写。AOF据此将内核缓冲区和用户缓冲区分别用于AOF持久化和重写AOF持久化文件。下文仅用缓存区指代,不再区分。

与RDB全量同步不同,AOF(Append Only File只追加文件), 向文件中增量追加变化(类似mysql的binlog),AOF的流程如下所示:
在这里插入图片描述
AOF持久化可以分为以下两个部分。
(1) 将数据写入缓存区
当Redis主线程完成内存修改后,将修改数据写入到缓存区;这部分也会占据主线程的时间。
(2) 将缓存刷入硬盘
当Redis主线程将数据写入缓存区后,根据配置的持久化策略确定是否调用 flushAppendOnlyFile方法将缓存数据刷入硬盘。之前提到的aof的配置项appendfsync表示持久化策略,有三个取值:always—每次修改都进行持久化(立即调用);everysec—每秒持久化一次(每秒调用一次);no不主动持久化(不调用),由系统决定。
数据刷入磁盘后,生成一个AOF文件,可通过如下配置配置文件名称:

#开启AOF, 默认是no关闭状态
appendonly yes#配置aof的文件名
appendfilename "appendonly.aof"# aof持久化策略: everysec表示每秒持久化一次, always每次修改都进行持久化
appendfsync everysec

当RDB关闭,而AOF开启:重启Redis时,redis会根据AOF的持久化文件(appendonly.aof)恢复内存数据。
当RDB和AOF都开启时:优先使用AOF持久化文件恢复数据;如果AOF文件不存在或者损坏,再尝试使用RDB持久化文件恢复数据。

rewrite

每个操作都会记录在appendonly.aof文件中,会导致文件变大且存放很多无意义的中间操作。

traffic:0>set key1 value1
"OK"
traffic:0>set key1 value2
"OK"
traffic:0>del key1
"1"

Redis经理上述新增、修改和删除key1键后,内存不变化,但是AOF文件内容如下所示:

*2
$6
SELECT
$1
0
*3
$3
set
$4
key1
$6
value1
*3
$3
set
$4
key1
$6
value2
*2
$3
del
$4
key1

为解决该问题,Redis引入rewrite重写机制。

rewrite可以通过redis.conf配置文件的auto-aof-rewrite-percentage和auto-aof-rewrite-min-size确定触发频率:

#需要二者同时满足,才会触发
# aof文件增长达到上一次的100%时才会触发
auto-aof-rewrite-percentage 100
# aof需要大于64M才会触发
auto-aof-rewrite-min-size 64mb

触发rewrite后,流程如下所示:
在这里插入图片描述
[1] 主进程fork出子进程(阻塞),然后继续工作;
[2] 与RDB相同,子进程此刻拥有与主进程的全部内存信息,子进程将该部分信息写入临时AOF文件;
[3] 在此期间,主进程会接收数据库操作指令并修改内存数据库,此时,Redis主进程会将该部分指令数据写入重写缓存区和AOF缓冲区(写入AOF文件);
[4] 当子进程将快照写完时,重写缓存区中累积的数据写入临时AOF;
[5] 使用临时AOF替换原AOF文件;
这里有个细节需要注意:子进程将重新缓存数据写入到临时AOF文件之前,需要先向主进程发送消息:“暂时不要发数据给我”,此过程中累积的消息后续会直接更新到AOF文件中。

这篇关于Redis系列-2 Redis持久化机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958200

相关文章

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

SpringCloud之consul服务注册与发现、配置管理、配置持久化方式

《SpringCloud之consul服务注册与发现、配置管理、配置持久化方式》:本文主要介绍SpringCloud之consul服务注册与发现、配置管理、配置持久化方式,具有很好的参考价值,希望... 目录前言一、consul是什么?二、安装运行consul三、使用1、服务发现2、配置管理四、数据持久化总

redis+lua实现分布式限流的示例

《redis+lua实现分布式限流的示例》本文主要介绍了redis+lua实现分布式限流的示例,可以实现复杂的限流逻辑,如滑动窗口限流,并且避免了多步操作导致的并发问题,具有一定的参考价值,感兴趣的可... 目录为什么使用Redis+Lua实现分布式限流使用ZSET也可以实现限流,为什么选择lua的方式实现

Redis中管道操作pipeline的实现

《Redis中管道操作pipeline的实现》RedisPipeline是一种优化客户端与服务器通信的技术,通过批量发送和接收命令减少网络往返次数,提高命令执行效率,本文就来介绍一下Redis中管道操... 目录什么是pipeline场景一:我要向Redis新增大批量的数据分批处理事务( MULTI/EXE

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Redis中的常用的五种数据类型详解

《Redis中的常用的五种数据类型详解》:本文主要介绍Redis中的常用的五种数据类型详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis常用的五种数据类型一、字符串(String)简介常用命令应用场景二、哈希(Hash)简介常用命令应用场景三、列表(L

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

Redis中如何实现商品秒杀

《Redis中如何实现商品秒杀》:本文主要介绍Redis中如何实现商品秒杀问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录技术栈功能实现步骤步骤一:准备商品库存数据步骤二:实现商品秒杀步骤三:优化Redis性能技术讲解Redis的List类型Redis的Set

Redis如何实现刷票过滤

《Redis如何实现刷票过滤》:本文主要介绍Redis如何实现刷票过滤问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录引言一、概述二、技术选型三、搭建开发环境四、使用Redis存储数据四、使用SpringBoot开发应用五、 实现同一IP每天刷票不得超过次数六

Redis客户端工具之RedisInsight的下载方式

《Redis客户端工具之RedisInsight的下载方式》RedisInsight是Redis官方提供的图形化客户端工具,下载步骤包括访问Redis官网、选择RedisInsight、下载链接、注册... 目录Redis客户端工具RedisInsight的下载一、点击进入Redis官网二、点击RedisI