Redis系列-2 Redis持久化机制

2024-05-04 02:52
文章标签 redis 系列 持久 化机制

本文主要是介绍Redis系列-2 Redis持久化机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景:

服务器重启后会丢失内存中的全部数据,内存数据库如果没有持久化机制,难以保证数据的可靠性,如Memcached。Redis提供了RDB(基于全量)和AOF(基于增量)两种持久化机制,一方面可以保证数据的可靠性,当服务器意外宕机重启后,Redis从持久化文件中读取数据,可以快速恢复到宕机前的状态;另外,基于持久化文件可以实现数据备份、数据扩展和搭建Redis集群。

1.RDB

RDB持久化当前内存快照的数据,属于全量同步。RDB有两种触发类型: 当Redis客户端执行save命令时,使用Redis主进程进行持久化,会阻塞此期间的用户请求;当Redis客户端执行bgsave命令或者配置文件中save规则触发持久化时,通过创建子进程并将持久化任务委托给子进程,从而不会阻塞Redis主线程。持久化完成后会生成一个持久化文件dump.rdb文件, 文件内容是二进制数据。当RDB开启而AOF关闭,重启服务时,Redis会根据dump.rdb文件恢复内存数据。
save规则可通过redis.conf配置文件或通过命令形式:

# 查看save规则
traffic:0>config get save
1) "save"
2) "900 1 300 10 60 10000"# 清空save规则
traffic:0>config set save ""
"OK"
traffic:0>config get save
1) "save"
2) ""# 新增save规则
traffic:0>config set save "900 1"
"OK"
traffic:0>config get save
1) "save"
2) "900 1"

“save 900 1"持久化规则表示每900秒内有key进行了修改,触发持久化;将save设置为""时,表示关闭RDB。
另外,dir(持久化存放文件路径)和dbfilename(持久化文件名称)是受保护的配置,不可通过config set命令修改。

RDB实现机制

在这里插入图片描述
如上图所示,通过bgsave指令或者save规则(本质也是bgsave指令)触发,Redis主进程会创建一个子进程,将RDB持久化操作委托给子进程处理, 子进程将内存快照写入临时dump.rdb文件,之后替换原有的dump.rdb文件。其中,Redis主进程fork子进程时会阻塞,且内存越大阻塞时间越长。

内存快照
Redis主进程fork子进程时,子进程共享主进程的所有内存信息,如下图所示:
在这里插入图片描述
通过CopyOnWrite技术,Redis数据库信息在内存中仅保存一份:主进程修改数据时,复制一份副本并在副本的基础上进行修改,未修改的部分与之前保持一致。当主进程将内存中0x3b地址的值由4改成400时,有如下变化:
在这里插入图片描述
当主进程对0x3b的数据写操作时,系统的CopyOnWrite机制将复制0x3b数据至0x3f, 并将主进程的内存地址由0x3b切换至0x3f; 主进程对0x3f进行写操作,数据由4修改为40。
需要注意的是,主进程未修改部分内存地址无变化,子进程全部内存地址无变化。因此,子进程被fork后,Redis主进程的数据变化对子进程不可见,子进程保留了被fork瞬间主进程的全部内存信息, 也叫做内存快照。
在这里插入图片描述
子进程将该部分内存快照(0x34,0x38,0x3b)持久化写入dump.rdb文件,而主进程改动的部分(4->400)未被写入RDB文件,改动部分将在下次RDB时持久化,如果下次RDB前Redis服务被重启,可能存在数据丢失的风险。
在这里插入图片描述
绿色部分表示正在持久化的内存数据(RDB子进程的内存快照),黄色部分表示Redis待持久化的部分(Redis主进程修改的部分)。如果快照数据较大,持久化时间较长,待持久化的数据积累越多,此时Redis重启会丢失大量的数据。因此,为保障数据的可靠性,RDB一般与AOF结合使用。

2.AOF

一般而言,POSIX 标准的 I/O 库,因直接使用内核缓冲区(涉及用户态和内核态的来回切换),适合小文件的读写;而封装的C语言标准IO库,使用用户态缓存区(无需切换内核形态),更适合大文件的读写。AOF据此将内核缓冲区和用户缓冲区分别用于AOF持久化和重写AOF持久化文件。下文仅用缓存区指代,不再区分。

与RDB全量同步不同,AOF(Append Only File只追加文件), 向文件中增量追加变化(类似mysql的binlog),AOF的流程如下所示:
在这里插入图片描述
AOF持久化可以分为以下两个部分。
(1) 将数据写入缓存区
当Redis主线程完成内存修改后,将修改数据写入到缓存区;这部分也会占据主线程的时间。
(2) 将缓存刷入硬盘
当Redis主线程将数据写入缓存区后,根据配置的持久化策略确定是否调用 flushAppendOnlyFile方法将缓存数据刷入硬盘。之前提到的aof的配置项appendfsync表示持久化策略,有三个取值:always—每次修改都进行持久化(立即调用);everysec—每秒持久化一次(每秒调用一次);no不主动持久化(不调用),由系统决定。
数据刷入磁盘后,生成一个AOF文件,可通过如下配置配置文件名称:

#开启AOF, 默认是no关闭状态
appendonly yes#配置aof的文件名
appendfilename "appendonly.aof"# aof持久化策略: everysec表示每秒持久化一次, always每次修改都进行持久化
appendfsync everysec

当RDB关闭,而AOF开启:重启Redis时,redis会根据AOF的持久化文件(appendonly.aof)恢复内存数据。
当RDB和AOF都开启时:优先使用AOF持久化文件恢复数据;如果AOF文件不存在或者损坏,再尝试使用RDB持久化文件恢复数据。

rewrite

每个操作都会记录在appendonly.aof文件中,会导致文件变大且存放很多无意义的中间操作。

traffic:0>set key1 value1
"OK"
traffic:0>set key1 value2
"OK"
traffic:0>del key1
"1"

Redis经理上述新增、修改和删除key1键后,内存不变化,但是AOF文件内容如下所示:

*2
$6
SELECT
$1
0
*3
$3
set
$4
key1
$6
value1
*3
$3
set
$4
key1
$6
value2
*2
$3
del
$4
key1

为解决该问题,Redis引入rewrite重写机制。

rewrite可以通过redis.conf配置文件的auto-aof-rewrite-percentage和auto-aof-rewrite-min-size确定触发频率:

#需要二者同时满足,才会触发
# aof文件增长达到上一次的100%时才会触发
auto-aof-rewrite-percentage 100
# aof需要大于64M才会触发
auto-aof-rewrite-min-size 64mb

触发rewrite后,流程如下所示:
在这里插入图片描述
[1] 主进程fork出子进程(阻塞),然后继续工作;
[2] 与RDB相同,子进程此刻拥有与主进程的全部内存信息,子进程将该部分信息写入临时AOF文件;
[3] 在此期间,主进程会接收数据库操作指令并修改内存数据库,此时,Redis主进程会将该部分指令数据写入重写缓存区和AOF缓冲区(写入AOF文件);
[4] 当子进程将快照写完时,重写缓存区中累积的数据写入临时AOF;
[5] 使用临时AOF替换原AOF文件;
这里有个细节需要注意:子进程将重新缓存数据写入到临时AOF文件之前,需要先向主进程发送消息:“暂时不要发数据给我”,此过程中累积的消息后续会直接更新到AOF文件中。

这篇关于Redis系列-2 Redis持久化机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958200

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

Redis中使用布隆过滤器解决缓存穿透问题

一、缓存穿透(失效)问题 缓存穿透是指查询一个一定不存在的数据,由于缓存中没有命中,会去数据库中查询,而数据库中也没有该数据,并且每次查询都不会命中缓存,从而每次请求都直接打到了数据库上,这会给数据库带来巨大压力。 二、布隆过滤器原理 布隆过滤器(Bloom Filter)是一种空间效率很高的随机数据结构,它利用多个不同的哈希函数将一个元素映射到一个位数组中的多个位置,并将这些位置的值置

Lua 脚本在 Redis 中执行时的原子性以及与redis的事务的区别

在 Redis 中,Lua 脚本具有原子性是因为 Redis 保证在执行脚本时,脚本中的所有操作都会被当作一个不可分割的整体。具体来说,Redis 使用单线程的执行模型来处理命令,因此当 Lua 脚本在 Redis 中执行时,不会有其他命令打断脚本的执行过程。脚本中的所有操作都将连续执行,直到脚本执行完成后,Redis 才会继续处理其他客户端的请求。 Lua 脚本在 Redis 中原子性的原因

Java基础回顾系列-第七天-高级编程之IO

Java基础回顾系列-第七天-高级编程之IO 文件操作字节流与字符流OutputStream字节输出流FileOutputStream InputStream字节输入流FileInputStream Writer字符输出流FileWriter Reader字符输入流字节流与字符流的区别转换流InputStreamReaderOutputStreamWriter 文件复制 字符编码内存操作流(

Java基础回顾系列-第五天-高级编程之API类库

Java基础回顾系列-第五天-高级编程之API类库 Java基础类库StringBufferStringBuilderStringCharSequence接口AutoCloseable接口RuntimeSystemCleaner对象克隆 数字操作类Math数学计算类Random随机数生成类BigInteger/BigDecimal大数字操作类 日期操作类DateSimpleDateForma