笔记:linux内核内存布局以及/dev/mem

2024-05-03 22:08

本文主要是介绍笔记:linux内核内存布局以及/dev/mem,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考一下两篇文章:

linux内核内存管理(zone_dma zone_normal zone_highmem)(linux memory layout)

/dev/mem可没那么简单

学习笔记(以x86为例)

linux的虚拟地址空间:

32位的CPU,最大寻址范围为2^32 - 1也就是4G的线性地址空间。Linux简化了分段机制,使得虚拟地址与线性地址总是一致的。linux一般把这个4G的地址空间划分为两个部分:其中0~3G为用户程序地址空间,虚地址0x00000000到0xBFFFFFFF,供各个进程使用;3G~4G为内核的地址空间,虚拟地址0xC0000000到0xFFFFFFFF, 供内核使用。(注意,ARM架构不是3G/1G划分的,而是2G/2G划分。这里以3G/1G划分作讲解)。

  1. 物理内存(以4G内存为例)依次由DMA_ZONE(0~16M),NORMAL_ZONE(16~896M)和HIGH_ZONE(896~4G)组成。
  2. 内核虚拟地址空间又可以分为lowmemory和highmemory两个部分或者对应物理内存的DMA_ZONE,NORMAL_ZONE(DMA_ZONE和NORMAL_ZONE线性映射到内核虚拟地址空间(即物理地址加一个offset))和HIGH_ZONE(需要通过kmap动态映射)三个部分:
  • 其中lowmemory(共896M, 位置vm_kernel_base ~ vm_kernel_base + 896M)对应物理内存DMA_ZONE,NORMAL_ZONE。NORMAL_ZONE主要存放内核会频繁使用的数据如kernel代码、GDT、IDT、PGD、mem_map数组等。
  • highmemory(共128M,位置vm_kernel_base + 896M ~1G)对应物理内存HIGH_ZONE部分,主要存放用户数据、页表(PT)等不常用数据,只有要访问这些数据时才建立映射关系(通过kmap()),这样即使内核的虚拟地址空间最大只有1G也可以通过higmemory的128M空间采用动态建立映射的方式访问HIGH_ZONE的全部内容,结合lowmemory访问DMA_ZONE,NROMAL_ZONE,可以实现对整个4G内存的访问。highmemory的使用场景:譬如可以通过ioremap使用位于HIGH_ZONE部分的IO内存,又或者在内核虚拟空间(3~4G)访问用户虚拟空间(0~3G)的数据(通过将用户空间内存数据映射到内核空间实现)。

 

/dev/mem内存映射:

如果不做CONFIG_STRICT_DEVMEM限定,那么可以映射所有的地址空间;

如果添加了CONFIG_STRICT_DEVMEM限定,在做映射前会执行一下检测:

  • 地址范围不能超过4G;
  • 该物理地址所在的iomem不能是exclusive(独占)的;
  • 该物理地址不能在内核的lowmem部分。

简单解析一下"/driver/char/mem.c"中mmap的实现:

static int mmap_mem(struct file *file, struct vm_area_struct *vma)
{size_t size = vma->vm_end - vma->vm_start;if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))return -EINVAL;if (!private_mapping_ok(vma))return -ENOSYS;if (!range_is_allowed(vma->vm_pgoff, size))return -EPERM;if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,&vma->vm_page_prot))return -EINVAL;vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,size,vma->vm_page_prot);vma->vm_ops = &mmap_mem_ops;/* Remap-pfn-range will mark the range VM_IO */if (remap_pfn_range(vma,vma->vm_start,vma->vm_pgoff,size,vma->vm_page_prot)) {return -EAGAIN;}return 0;
}
  • "valid_mmap_phys_addr_range"函数检查要mmap的物理地址范围是否超过4G空间,超过则无效;
  • "private_mapping_ok"函数对于支持MMU的平台来说总是返回"1";
  • "range_is_allowed"在没有配置CONFIG_STRICT_DEVMEM的情况下总是返回"1",配置了的话需要该物理地址所在的iomem不能使exclusive独占的,并且不能处在lowmem空间中;
  • "phys_mem_access_prot_allowed"总是返回"1"表示可以设置该段需要被映射内存的protection标志;

 

以上4段在/dev/mem可没那么简单 都有分析,查看源码很容易理解,下面单独介绍一下"phys_mem_access_prot"。该函数是用来给vma的protection属性添加noncached属性(或者叫做noncached & nonbuffered,即对内存的访问是不经过硬件cache和buffer的,处理器一般具有4种cache属性:non-cached&non-buffered/non-cached&buffered/cached&write-through/cached&write-back(参考关于cache和write buffer和ARM的cache和写缓冲器(write buffer)))。

#ifdef pgprot_noncached
static int uncached_access(struct file *file, phys_addr_t addr)
{
#if defined(CONFIG_IA64)/** On ia64, we ignore O_DSYNC because we cannot tolerate memory* attribute aliases.*/return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
#elif defined(CONFIG_MIPS){extern int __uncached_access(struct file *file,unsigned long addr);return __uncached_access(file, addr);}
#else/** Accessing memory above the top the kernel knows about or through a* file pointer* that was marked O_DSYNC will be done non-cached.*/if (file->f_flags & O_DSYNC)return 1;return addr >= __pa(high_memory);
#endif
}
#endifstatic pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,unsigned long size, pgprot_t vma_prot)
{
#ifdef pgprot_noncachedphys_addr_t offset = pfn << PAGE_SHIFT;if (uncached_access(file, offset))return pgprot_noncached(vma_prot);
#endifreturn vma_prot;
}

"#ifdef pgprot_noncached"如果不支持noncahed的page访问属性那么直接采用用户空间mmap设定的属性,否则执行"uncached_access(file, offset)"检查是否应为该段内存设置noncached访问属性。"uncached_access(file, offset)"针对三种平台IA64/MIPS/OTHERS提供了三种不同的检测方式(实际是两种:MIPS和OTHERS平台的实现方式是一样的,体现在"__uncached_access(file, offset)"函数中),对于非IA64平台如果设置了文件的O_DSYNC位那么对于文件内存的访问就应该是noncached的,或者要映射的物理内存位于highmem地址空间,那么对其的访问也应该是noncached的。

最后如果支持noncached属性,那么就通过"pgprot_noncached(vma_prot)"向vma的protection属性中添加noncached属性。

最终调用"remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, size, vm->vm_page_prot)"实现物理地址到虚拟地址的映射。

这篇关于笔记:linux内核内存布局以及/dev/mem的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957753

相关文章

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

CSS弹性布局常用设置方式

《CSS弹性布局常用设置方式》文章总结了CSS布局与样式的常用属性和技巧,包括视口单位、弹性盒子布局、浮动元素、背景和边框样式、文本和阴影效果、溢出隐藏、定位以及背景渐变等,通过这些技巧,可以实现复杂... 一、单位元素vm 1vm 为视口的1%vh 视口高的1%vmin 参照长边vmax 参照长边re

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的