【linux-汇编-点灯之思路-程序】

2024-05-03 22:04

本文主要是介绍【linux-汇编-点灯之思路-程序】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. ARM汇编中的一些注意事项
  • 2. IMXULL汇编点灯的前序:
  • 3. IMXULL汇编点灯之确定引脚:
  • 4. IMXULL汇编点灯之引脚功能编写:
    • 4.1 第一步,开时钟
    • 4.2 第二步,定功能(MUX)
    • 4.3 第三步,定电气属性(PAD)
    • 4.4 第四步,定输出/输入

1. ARM汇编中的一些注意事项

  
在 ARM 中,MOV 指令和 LDR 指令的区别主要体现在以下几个方面:

  1. 数据传输方向:MOV 指令只能在寄存器之间移动数据,或者将立即数移动到寄存器中;而 LDR 指令可以将数据从内存中读取到寄存器中。
  2. 立即数的使用:MOV 指令对立即数的范围有要求,只能是由 8 位连续有效位通过偶数次移位能得到的数;LDR 指令的伪指令形式(如 LDR R0, =0xabcdef)则没有立即数范围的限制。
  3. 功能差异:MOV 不能用于将数据从内存移动到 CPU,而 LDR 可以。LDR 伪指令和 LDR 指令虽然名字相似,但作用不同,LDR 伪指令可以将立即数或地址值写入寄存器,而 LDR 指令用于从内存中读取数据到寄存器。

  汇编也是一种编程语言,既然是语言就是有通用的逻辑,和C语言的逻辑一样,汇编也有包括,赋值,逻辑运算,循环,跳转,以及对应硬件的部分的中断之类的,具体对用要实现什么逻辑功能,可以百度对用的逻辑指令和注意事项,多用才能记得熟练;

2. IMXULL汇编点灯的前序:

  在STM32学习过程中,对应的要把一个LED灯点亮,总体思路就是控制对应的硬件引脚的高低电平,那么对于IMXULL而言,也是同样的;
  在STM32中配置一个引脚的具体步骤如下:

  1. 开时钟
  2. 定电气属性,包括速度、模式、上下拉之类的
  3. 有没有复用,把复用功能指定好
  4. 定IO口是输出还是输入,IO口(Input/Ouput的缩写,不指定输出或者输出模式,就无法进行有效的控制)如下图:
    在这里插入图片描述

  因此对于IMXULL而言,步骤也是如此;但是在STM32中是用C语言实现的,但是IMXULL中是由汇编实现的,但是具体的内在逻辑是一致的;

3. IMXULL汇编点灯之确定引脚:

  每个芯片厂商对自己的引脚都有自己的一套命名规则,而对于NXP一个引脚命令规则有两个,因为其采用了:IOMUXC(Input-Ouput-Muxing-Control)模式,也就是一个引脚可以进行很多种复用功能
  关注两点,一个引脚有两个名称,对应两个不同的寄存器地址,分别是MUX(Muxng)配置模式和PAD(Pad)配置电器属性:

  • IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03:配置GPIO1_IO03引脚的功能,MUX配置模式,PAD配置电气属性
  • IOMUXC_SW_PAD_CTL_PAD_GPIO1_IO03:配置电气属性,与MUX是一一对应的,PAD的意思是焊盘

  IOMUXC_SW_MUX_ CTL_PAD_GPIO1_IO03:数据手册说明
在这里插入图片描述
   IOMUXC_SW_PAD_CTL_PAD_GPIO1_IO03:数据手册说明
在这里插入图片描述

4. IMXULL汇编点灯之引脚功能编写:

4.1 第一步,开时钟

  确定完引脚后,第一步就是开启时钟,这里为了简便表示可以把时钟全部打开,找到GPIO1时钟介绍的数据手册:把对应位设置为11就是开启时钟,这里为了简便,把CCR0~CCR6的时钟全部开启:
在这里插入图片描述
  具体汇编实现如下:这里不用MOV指令,是因为这些文件是烧录在SD卡上,启动后加载到RAM内存中,也就是在存储中对这些值进行访问,取到这些值后再放到寄存器中,因此取值用的是ldr

.global _start @全局标号_start:/*初始化使能所有外设时钟*/ldr r0,=0x020c4068 @CCGR0ldr r1,=0xffffffff @要向CCGR0写入的数据str r1,[r0] @将0xffffffff写入到CCGR0中ldr r0,=0x020c406c @CCGR1str r1,[r0]ldr r0,=0x020c4070 @CCGR2str r1,[r0]ldr r0,=0x020c4074 @CCGR3str r1,[r0]ldr r0,=0x020c4078 @CCGR4str r1,[r0]ldr r0,=0x020c407c @CCGR5str r1,[r0]ldr r0,=0x020c4080 @CCGR6str r1,[r0]

4.2 第二步,定功能(MUX)

  第二步就是配置GPIO1_IO3引脚的的复用模式是GPIO1功能,也就是IO口(输入和输出的功能),也就是令:IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03=0x0101=5,也就是在GPIO1_IO03对应的寄存器地址写入5的内容,具体汇编实现如下:

/*第二步 复用引脚:GPIO1_IO03  PIN的复用为GPIO 设置:IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03=5IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03的地址为:0x020E0068*/ldr r0,=0x020E0068 @IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03地址ldr r1,=0x5 @要向IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03写入的数据str r1,[r0] @将0x5写入到0x020E0068对应寄存器中

4.3 第三步,定电气属性(PAD)

  第三步就是配置GPIO1_IO3引脚的电气属性,也就是配置:IOMUXC_SW_PAD_CTL_PAD_GPIO1_IO03:寄存器的电气属性,其中具体可参考数据手册,具体就是如下:

/* 第三步:配置电气属性GPIO1_1O03的电气属性:* 也就是寄存器:IOMUXC_SW_PAD_CTL_PAD_GPIO1_IO03* 寄存器IOMUXC_SW_PAD_CTL_PAD_GPIO1_IO03地址: 0x020E02F4* bit0:        0       低速率* bit5:3       110     R0/6* bit7:6       10      100MHZ* bit11:       0       关闭,开路输出* bit12:       1       使能保持* bir13:       0       keeper* bit15:14     00      100K下拉* bit16:      0       关闭hys* total:       0x10B0*/ldr r0,=0x020E02F4 @IOMUXC_SW_PAD_CTL_PAD_GPIO1_IO03ldr r1,=0x10B0 @要向IOMUXC_SW_PAD_CTL_PAD_GPIO1_IO03写入的数据str r1,[r0] @

4.4 第四步,定输出/输入

  第四步就是配置GPIO1_IO3的功能,首先对于一个GPIO而言,要想输出0或者1,那么不能凭空输出吧,因此要先对引脚赋值为1或者0,然后让这个引脚进行输出,不然单单一个输出,输出的数据是0还是1呢?所以就是先写数据,然后进行输出,总体思路就是这样,由于我们配置的模式是GPIO(General Purpose Input/Output)的模式,因此在参考手册中找到对应的GPIO的章节,这里注意GPIO和IIC或者其他的模式一样,每一个模式都有对应的寄存器介绍,只需找到对应的寄存器的介绍说明就行:这里截取GPIO_IO3的GPIO模式的对应说明参考手册:要注意我们配置的是GPIO1,但是在GPIOx这里的地址是:0x0209C000
  其中DR(data register)寄存器就是设置数据的,而DIR寄存器就是设置输入还是输出的;两个寄存器是挨着的,地址的便宜是4,可以根据参考手册看出来
在这里插入图片描述
在这里插入图片描述

/*  设置GPIO1的功能 *  设置GPIO1_GDIR寄存器,设置GPIO1_GPIO3为输出  *  GPIO1_GDIR寄存器的地址是:209_C004*  设置:GPIO1_GDIR寄存器bit3为1,也就是:GPIO1_GPIO3为输出*/ldr r0,=0x0209c004ldr r1,=0x8str r1,[r0]
/*  打开LED,也就是设置GPIO1_IO03为低0 
*   GPIO1_DR的地址为:0x0209c000
*   */ldr r0,=0x0209c000ldr r1,=0str r1,[r0]loop:b loop

这篇关于【linux-汇编-点灯之思路-程序】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957752

相关文章

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

Linux服务器Java启动脚本

Linux服务器Java启动脚本 1、初版2、优化版本3、常用脚本仓库 本文章介绍了如何在Linux服务器上执行Java并启动jar包, 通常我们会使用nohup直接启动,但是还是需要手动停止然后再次启动, 那如何更优雅的在服务器上启动jar包呢,让我们一起探讨一下吧。 1、初版 第一个版本是常用的做法,直接使用nohup后台启动jar包, 并将日志输出到当前文件夹n

[Linux]:进程(下)

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:Linux学习 贝蒂的主页:Betty’s blog 1. 进程终止 1.1 进程退出的场景 进程退出只有以下三种情况: 代码运行完毕,结果正确。代码运行完毕,结果不正确。代码异常终止(进程崩溃)。 1.2 进程退出码 在编程中,我们通常认为main函数是代码的入口,但实际上它只是用户级