【AIGC半月报】AIGC大模型启元:2024.05(上)

2024-05-03 19:28

本文主要是介绍【AIGC半月报】AIGC大模型启元:2024.05(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AIGC大模型启元:2024.05(上)

    • (1) Video Mamba Suite(Mamba视频领域应用)
    • (2) KAN(全新神经网络架构)
    • (3) Meshy 3(文本生成3D模型)
    • (4) MemGPT(LLM记忆管理框架)

(1) Video Mamba Suite(Mamba视频领域应用)

2024.05.01 来自南京大学、上海人工智能实验室、复旦大学、浙江大学的研究团队发布了一项开创性工作。他们全面审视了 Mamba 在视频建模中的多重角色,提出了针对 14 种模型 / 模块的 Video Mamba Suite,在 12 项视频理解任务中对其进行了深入评估。结果令人振奋:Mamba 在视频专用和视频 - 语言任务中均展现出强劲的潜力,实现了效率与性能的理想平衡。这不仅是技术上的飞跃,更是对未来视频理解研究的有力推动。
  研究团队精心打造了 video-mamba-suite(视频 Mamba 套件)。该套件旨在补充现有研究的不足,通过一系列深入的实验和分析,探索 Mamba 在视频理解中的多样化角色和潜在优势。

推荐文章: Mamba再次击败Transformer!在视频理解任务中杀疯了!
论文链接: https://arxiv.org/abs/2403.09626
代码链接: https://github.com/OpenGVLab/video-mamba-suite

(2) KAN(全新神经网络架构)

2024.05.02 一种全新的神经网络架构KAN,诞生了!与传统的MLP架构截然不同,且能用更少的参数在数学、物理问题上取得更高精度。
  在函数拟合、偏微分方程求解,甚至处理凝聚态物理方面的任务都比MLP效果要好。
  而在大模型问题的解决上,KAN天然就能规避掉灾难性遗忘问题,并且注入人类的习惯偏差或领域知识非常容易。
  来自MIT、加州理工学院、东北大学等团队的研究一出,瞬间引爆一整个科技圈:Yes We KAN!

推荐文章: 全新神经网络架构KAN一夜爆火!200参数顶30万,MIT华人一作,轻松复现Nature封面AI数学研究version=4.1.22.6014&platform=win&nwr_flag=1#wechat_redirect)
项目链接: https://kindxiaoming.github.io/pykan/
论文链接: https://arxiv.org/abs/2404.19756

(3) Meshy 3(文本生成3D模型)

2024.05.01 文本生成3D模型Meshy 3重磅发布,目前可免费试用,UI、提示词都支持中文。
  本次,Meshy 3生成的3D模型更加细腻逼真,支持360度全景观超分辨率贴图、纹理、位移、法线、曲率以及物理光照渲染效果。
  也就是说,用户可以像雕塑那样去生成3D模型,并且可下载fbx、obj、glb、usdz等文件格式放在不同场景中使用。

推荐文章: 支持中文,免费试用!文本生成360度,物理光照3D模型
项目链接: /
论文链接: /
免费体验地址: https://app.meshy.ai/zh/discover

(4) MemGPT(LLM记忆管理框架)

2024.05.02 根据《MemGPT:将大语言模型作为操作系统》论文,其研发灵感来自于操作系统的分层内存系统,通过在快速和慢速内存之间移动数据来提供大内存资源的外观。MemGPT系统,智能地管理不同的内存层,以有效地在LLM的有限上下文窗口内提供扩展上下文,并利用中断来管理自身与用户之间的控制流。
  MemGPT的研究者写道:“大型语言模型 彻底改变了人工智能,但受到有限的上下文窗口的限制,阻碍了它们在扩展对话和文档分析等任务中的实用性。为了能够在有限的上下文窗口之外使用上下文,我们提出了虚拟上下文管理,这是一种从传统操作系统中的分层内存系统中汲取灵感的技术,该技术通过快速内存和慢速内存之间的数据移动提供大内存资源的外观。使用这种技术,我们引入了 MemGPT,这是一个智能管理不同内存层的系统,以便在 LLM 有限的上下文窗口内有效地提供扩展上下文,并利用中断来管理其自身和用户之间的控制流。我们在两个领域评估了受操作系统启发的设计,现代 LLM 的有限上下文窗口严重影响了其性能:文档分析,MemGPT 能够分析远远超出底层 LLM 上下文窗口的大型文档,以及多会话聊天,其中 MemGPT 能够分析远远超出底层 LLM 上下文窗口的大型文档。MemGPT 可以创建会话代理,通过与用户的长期交互来记忆、反映和动态发展。”

推荐文章: GitHub 8.9K Star,伯克利大学开源LLM记忆管理框架MemGPT
项目链接: https://github.com/cpacker/MemGPT
论文链接: https://arxiv.org/abs/2310.08560
免费体验地址: https://app.meshy.ai/zh/discover

这篇关于【AIGC半月报】AIGC大模型启元:2024.05(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957463

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee