本文主要是介绍HDU Minimum Inversion Number,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
经典的线段树求解逆序数问题。
运用了一个逆序数的性质,如果一个数从首位换到尾位,这其逆序数将减少y[i],增加n-y[i]-1。
举个例子说明,如果一个排列3 1 2 0 4本来三前面应该有三个数比他小的,但是现在3在首位,则说明3产生的逆序数有3个,而将3换到尾位后,就说明比3大的都在3前面了,所以此时3的逆序数有n-y[i]-1(5-3-1 = 1).
线段树的话,先建立一个空树,每次不断的查询插入。就是一开始先查询树中有多少个数比当前要插入的值大,就说明改数拥有多少个逆序数。查询后,在把改数插入,不断重复。就可以得出答案。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define lson lft,mid,rt<<1
#define rson mid+1,rht,rt<<1|1
#define MID(a,b) (a+((b-a)>>1))const int MAXN = 5000+10;
struct Node{int lft,rht,val;int mid(){return MID(lft,rht);}
};
Node tree[4*MAXN];
int y[MAXN],n;
class Segtree{
public:void Build(int lft,int rht,int rt){tree[rt].lft = lft; tree[rt].rht = rht;tree[rt].val = 0;if(lft != rht){int mid = tree[rt].mid();Build(lson);Build(rson);}}void Update(int pos,int rt){int lft = tree[rt].lft,rht = tree[rt].rht;if(lft == rht)tree[rt].val++;else{int mid = tree[rt].mid();if(pos <= mid)Update(pos,L(rt));if(pos > mid)Update(pos,R(rt));tree[rt].val = tree[L(rt)].val + tree[R(rt)].val;}}int Query(int st,int ed,int rt){int lft = tree[rt].lft,rht = tree[rt].rht;if(st <= lft&&rht <= ed)return tree[rt].val;else{int mid = tree[rt].mid();int sum1 = 0,sum2 = 0;if(st <= mid) sum1 += Query(st,ed,L(rt));if(ed > mid) sum2 += Query(st,ed,R(rt));return sum1 + sum2;}}
};
int main()
{while(~scanf("%d",&n)){Segtree seg;seg.Build(0,n-1,1);int sum = 0;for(int i = 0;i < n;++i){scanf("%d",&y[i]);sum += seg.Query(y[i],n-1,1);seg.Update(y[i],1);}int ret = sum;for(int i = 0;i < n;++i){sum += (n-y[i]-1) - y[i];ret = min(ret,sum);}printf("%d\n",ret);}return 0;
}
这篇关于HDU Minimum Inversion Number的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!