ConcurrentHashMap优化

2024-05-03 12:58
文章标签 优化 concurrenthashmap

本文主要是介绍ConcurrentHashMap优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       首先我们这样假设,假设哈希映射的内部数组的大小只有1,所有的元素都将映射该位置(0),从而构成一条较长的链表。由于我们更新、访问都要对这条链表进行线性搜索,这样势必会降低效率。我们假设,如果存在一个非常大数组,每个位置链表处都只有一个元素,在进行访问时计算其 index 值就会获得该对象,这样做虽然会提高我们搜索的效率,但是它浪费了空间。诚然,虽然这两种方式都是极端的,但是它给我们提供了一种优化思路:使用一个较大的数组让元素能够均匀分布。在Map有两个会影响到其效率,一是容器的初始化大小、二是负载因子。

  • 调整初始化大小

       在哈希映射表中,内部数组中的每个位置称作“存储桶”(bucket),而可用的存储桶数(即内部数组的大小)称作容量 (capacity),我们为了使Map对象能够有效地处理任意数的元素,将Map设计成可以调整自身的大小。我们知道当Map中的元素达到一定量的时候就会调整容器自身的大小,但是这个调整大小的过程其开销是非常大的。调整大小需要将原来所有的元素插入到新数组中。我们知道index = hash(key) % length。这样可能会导致原先冲突的键不在冲突,不冲突的键现在冲突的,重新计算、调整、插入的过程开销是非常大的,效率也比较低下。所以,如果我们开始知道Map的预期大小值,将Map调整的足够大,则可以大大减少甚至不需要重新调整大小,这很有可能会提高速度。

  • 调整负载因子

       为了确认何时需要调整Map容器,Map使用了一个额外的参数并且粗略计算存储容器的密度。在Map调整大小之前,使用”负载因子”来指示Map将会承担的“负载量”,也就是它的负载程度,当容器中元素的数量达到了这个“负载量”,则Map将会进行扩容操作。负载因子、容量、Map大小之间的关系如下:负载因子 * 容量 > map大小  ----->调整Map大小。
       例如:如果负载因子大小为0.75(HashMap的默认值),默认容量为11,则 11 * 0.75 = 8.25 = 8,所以当我们容器中插入第八个元素的时候,Map就会调整大小。
       负载因子本身就是在控件和时间之间的折衷。当我使用较小的负载因子时,虽然降低了冲突的可能性,使得单个链表的长度减小了,加快了访问和更新的速度,但是它占用了更多的控件,使得数组中的大部分控件没有得到利用,元素分布比较稀疏,同时由于Map频繁的调整大小,可能会降低性能。但是如果负载因子过大,会使得元素分布比较紧凑,导致产生冲突的可能性加大,从而访问、更新速度较慢。所以我们一般推荐不更改负载因子的值,采用默认值0.75.



这篇关于ConcurrentHashMap优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956803

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

构建高性能WEB之HTTP首部优化

0x00 前言 在讨论浏览器优化之前,首先我们先分析下从客户端发起一个HTTP请求到用户接收到响应之间,都发生了什么?知己知彼,才能百战不殆。这也是作为一个WEB开发者,为什么一定要深入学习TCP/IP等网络知识。 0x01 到底发生什么了? 当用户发起一个HTTP请求时,首先客户端将与服务端之间建立TCP连接,成功建立连接后,服务端将对请求进行处理,并对客户端做出响应,响应内容一般包括响应

DAY16:什么是慢查询,导致的原因,优化方法 | undo log、redo log、binlog的用处 | MySQL有哪些锁

目录 什么是慢查询,导致的原因,优化方法 undo log、redo log、binlog的用处  MySQL有哪些锁   什么是慢查询,导致的原因,优化方法 数据库查询的执行时间超过指定的超时时间时,就被称为慢查询。 导致的原因: 查询语句比较复杂:查询涉及多个表,包含复杂的连接和子查询,可能导致执行时间较长。查询数据量大:当查询的数据量庞大时,即使查询本身并不复杂,也可能导致

MySQL 数据优化

MySQL 数据优化的指南 MySQL 数据库优化是一个复杂且重要的过程,它直接影响到系统的性能、可靠性和可扩展性。在处理大量数据或高并发请求时,数据库的优化尤为关键。通过合理的数据库设计、索引使用、查询优化和硬件调优,可以大幅提高 MySQL 的运行效率。本文将从几个主要方面详细介绍 MySQL 的优化技巧,帮助你在实际应用中提升数据库性能。 一、数据库设计优化 1. 数据库的规范化与反规

C++编程:ZeroMQ进程间(订阅-发布)通信配置优化

文章目录 0. 概述1. 发布者同步发送(pub)与订阅者异步接收(sub)示例代码可能的副作用: 2. 适度增加缓存和队列示例代码副作用: 3. 动态的IPC通道管理示例代码副作用: 4. 接收消息的超时设置示例代码副作用: 5. 增加I/O线程数量示例代码副作用: 6. 异步消息发送(使用`dontwait`标志)示例代码副作用: 7. 其他可以考虑的优化项7.1 立即发送(ZMQ_IM