Linux内核之原子操作:atomic_long_dec用法实例(六十七)

2024-05-03 02:20

本文主要是介绍Linux内核之原子操作:atomic_long_dec用法实例(六十七),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长!

优质专栏:Audio工程师进阶系列原创干货持续更新中……】🚀
优质专栏:多媒体系统工程师系列原创干货持续更新中……】🚀
优质视频课程:AAOS车载系统+AOSP14系统攻城狮入门实战课原创干货持续更新中……】🚀

人生格言: 人生从来没有捷径,只有行动才是治疗恐惧和懒惰的唯一良药.

更多原创,欢迎关注:Android系统攻城狮

欢迎关注Android系统攻城狮

🍉🍉🍉文章目录🍉🍉🍉

    • 🌻1.前言
    • 🌻2.Linux内核之atomic_long_dec介绍
    • 🌻3.代码实例
      • 🐓3.1 资源计数
      • 🐓3.2 状态切换
      • 🐓3.3 同步机制
      • 🐓3.4 资源管理

🌻1.前言

本篇目的:Linux内核之原子操作:atomic_long_dec用法实例

🌻2.Linux内核之atomic_long_dec介绍

  • atomic_long_dec() 函数是 Linux 内核中用于对长整型(long)原子操作的函数之一。它的作用是以原子方式减少一个长整型变量的值,并且保证这个操作是不可中断的,即在多线程环境下也能保证数据的一致性和正确性。

  • 在 Linux 内核中,原子操作是一种特殊的操作,能够保证在多处理器或者多核系统上的并发执行过程中,对共享数据的访问是安全的,不会发生竞态条件(Race Condition)或者数据不一致的情况。atomic_long_dec() 函数正是通过这种机制来实现对长整型变量的安全减少。

  • 具体来说,atomic_long_dec() 函数接受一个指向 atomic_long_t 类型的变量的指针作为参数,然后将该变量的值减少 1,并且保证这个减少操作是原子的。在执行减少操作期间,如果其他线程尝试对同一个变量进行操作,它们会被阻塞,直到当前操作完成,从而确保了操作的完整性和一致性。

  • 这个函数在 Linux 内核中的应用非常广泛,特别是在实现并发数据结构、同步机制和各种驱动程序中。通过使用原子操作,开发人员可以编写出更加高效、稳定和可靠的多线程代码,而无需担心因为竞态条件而引发的各种问题。

  • atomic_long_dec() 函数是 Linux 内核中重要的原子操作函数之一,它的作用是实现对长整型变量的原子减少操作,确保多线程环境下的数据访问安全和一致性。

🌻3.代码实例

🐓3.1 资源计数

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/atomic.h>// 定义一个原子长整型变量,用于表示可用资源的数量
static atomic_long_t resource_count = ATOMIC_LONG_INIT(10); // 假设初始资源数量为10static int __init resource_manager_init(void) {// 模拟使用一个资源时,将资源数量减少1atomic_long_dec(&resource_count);printk(KERN_INFO "Resource used, remaining count: %ld\n", atomic_long_read(&resource_count));return 0;
}static void __exit resource_manager_exit(void) {printk(KERN_INFO "Exiting...\n");
}module_init(resource_manager_init);
module_exit(resource_manager_exit);MODULE_LICENSE("GPL");
  • 使用 atomic_long_dec() 函数来实现资源计数的功能。
  • 每次模块初始化时,模拟使用一个资源并将资源数量减少1,然后打印剩余资源数量。

🐓3.2 状态切换

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/atomic.h>// 定义一个表示状态的枚举类型
enum device_state {DEVICE_STATE_ACTIVE,DEVICE_STATE_IDLE,DEVICE_STATE_OFFLINE
};// 原子计数器数组,用于统计各个状态的设备数量
static atomic_long_t device_state_counts[] = {ATOMIC_LONG_INIT(0), // ACTIVEATOMIC_LONG_INIT(0), // IDLEATOMIC_LONG_INIT(0)  // OFFLINE
};static int __init device_status_init(void) {// 假设设备状态切换为 IDLE,将对应状态计数器减少1enum device_state current_state = DEVICE_STATE_IDLE;atomic_long_dec(&device_state_counts[current_state]);printk(KERN_INFO "Device status changed to IDLE, count: %ld\n", atomic_long_read(&device_state_counts[current_state]));return 0;
}static void __exit device_status_exit(void) {printk(KERN_INFO "Exiting...\n");
}module_init(device_status_init);
module_exit(device_status_exit);MODULE_LICENSE("GPL");
  • 使用 atomic_long_dec() 函数来实现设备状态的切换功能。
  • 每次模块初始化时,假设设备状态切换为 IDLE,然后将对应状态计数器减少1,并打印变更后的状态计数。

🐓3.3 同步机制

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/atomic.h>
#include <linux/delay.h>
#include <linux/kthread.h>// 全局的原子长整型变量,用于线程间同步
static atomic_long_t shared_variable = ATOMIC_LONG_INIT(10); // 假设初始值为10// 线程函数,每秒减少一次共享变量的值
static int my_thread_func(void *data) {int i;for (i = 0; i < 5; ++i) {msleep(1000);atomic_long_dec(&shared_variable);printk(KERN_INFO "Thread: Decremented shared variable to %ld\n", atomic_long_read(&shared_variable));}return 0;
}static int __init atomic_sync_init(void) {// 创建一个简单的内核线程,用于减少共享变量的值struct task_struct *my_thread;my_thread = kthread_run(my_thread_func, NULL, "my_thread");if (IS_ERR(my_thread)) {printk(KERN_ERR "Failed to create thread\n");return PTR_ERR(my_thread);}return 0;
}static void __exit atomic_sync_exit(void) {printk(KERN_INFO "Exiting...\n");
}module_init(atomic_sync_init);
module_exit(atomic_sync_exit);MODULE_LICENSE("GPL");
  • 使用原子操作来实现简单的线程同步机制。
  • 在初始化时,创建一个内核线程,它的工作是每秒减少一次共享变量的值。
  • 由于 atomic_long_dec() 函数是原子的,因此不需要额外的同步手段,就可以确保在多线程环境下对共享变量的操作是安全的。

🐓3.4 资源管理

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/atomic.h>
#include <linux/delay.h>
#include <linux/kthread.h>// 全局的原子长整型变量,用于表示资源数量
static atomic_long_t resource_count = ATOMIC_LONG_INIT(10); // 假设初始资源数量为10// 线程函数,模拟资源的使用和释放
static int resource_manager_func(void *data) {int i;for (i = 0; i < 5; ++i) {msleep(1000);atomic_long_dec(&resource_count); // 使用资源,数量减少1printk(KERN_INFO "Thread: Used resource, remaining count: %ld\n", atomic_long_read(&resource_count));msleep(1000);atomic_long_inc(&resource_count); // 释放资源,数量增加1printk(KERN_INFO "Thread: Freed resource, remaining count: %ld\n", atomic_long_read(&resource_count));}return 0;
}static int __init resource_management_init(void) {// 创建一个内核线程,模拟资源的使用和释放struct task_struct *resource_thread;resource_thread = kthread_run(resource_manager_func, NULL, "resource_thread");if (IS_ERR(resource_thread)) {printk(KERN_ERR "Failed to create resource management thread\n");return PTR_ERR(resource_thread);}return 0;
}static void __exit resource_management_exit(void) {printk(KERN_INFO "Exiting resource management driver...\n");
}module_init(resource_management_init);
module_exit(resource_management_exit);MODULE_LICENSE("GPL");

这篇关于Linux内核之原子操作:atomic_long_dec用法实例(六十七)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/955633

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详