Numpy中找出array中最大值所对应的行和列

2024-05-02 14:32

本文主要是介绍Numpy中找出array中最大值所对应的行和列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python特别灵活,肯定方法不止一种,这里介绍一种我觉得比较简单的方法。
如下图,使用x == np.max(x) 获得一个掩模矩阵,然后使用where方法即可返回最大值对应的行和列。
where返回一个长度为2的元组,第一个元素保存的是行号,第二个元素保存的是列号。

numpy

这篇关于Numpy中找出array中最大值所对应的行和列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/954465

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

找出php中可能有问题的代码行

前言 当你发现一个平时占用cpu比较少的进程突然间占用cpu接近100%时,你如何找到导致cpu飙升的原因?我的思路是,首先找到进程正在执行的代码行,从而确定可能有问题的代码段。然后,再仔细分析有问题的代码段,从而找出原因。 如果你的程序使用的是c、c++编写,那么你可以很容易的找到正在执行的代码行。但是,程序是php编写的,如何找到可能有问题的代码行呢?这个问题就是本文要解决的问题。 背景

【C++二分查找】2439. 最小化数组中的最大值

本文涉及的基础知识点 C++二分查找 LeetCode2439. 最小化数组中的最大值 给你一个下标从 0 开始的数组 nums ,它含有 n 个非负整数。 每一步操作中,你需要: 选择一个满足 1 <= i < n 的整数 i ,且 nums[i] > 0 。 将 nums[i] 减 1 。 将 nums[i - 1] 加 1 。 你可以对数组执行 任意 次上述操作,请你返回可以得到的 n

找出有毒的那一瓶药

找出有毒的那一瓶药 找出有毒的那一瓶药问题描述求解方法二进制编码方法详细示例 找出有毒的那一瓶药 问题描述 有47瓶药,其中只有一瓶有毒。从中毒到死亡时间为4天,问最少准备几只老鼠,在4天时间内找出有毒的药? 求解方法 要在4天内确定有毒药瓶,最少需要 6 只老鼠。以下是如何使用这 6 只老鼠来找出有毒药瓶的方法。 二进制编码方法 药瓶编号: 将47瓶药瓶编号从1到

定位cpu占用过高的线程和对应的方法

如何定位cpu占用过高的线程和对应的方法? 主要是通过线程id找到对应的方法。 1 查询某个用户cpu占用最高的进程号 top -u 用户名 2 查询这个进程中占用cpu最高的线程号 top –p 进程号-H    3 查询到进程id后把进程相关的代码打印到jstack文件 jstack -l pid > jstack.txt 4 在jstack文件中通过16进制的线程id搜索到

一台电脑对应一个IP地址吗?‌探讨两台电脑共用IP的可能性

在当今数字化时代,‌IP地址作为网络世界中的“门牌号”,‌扮演着至关重要的角色。‌它负责在网络上唯一标识每一台设备,‌使得数据能够在庞大的互联网中准确无误地传输。‌然而,‌对于IP地址与电脑之间的对应关系,‌许多人可能存有疑惑:‌一台电脑是否必须对应一个IP地址?‌两台电脑又是否可以共用一个IP地址呢?‌本文将深入探讨这些问题,‌带您一窥IP地址背后的奥秘。‌ 一台电脑对应一个IP地址吗?‌

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat

探索Python的数学魔法:Numpy库的神秘力量

文章目录 探索Python的数学魔法:Numpy库的神秘力量背景:为什么选择Numpy?Numpy是什么?如何安装Numpy?五个简单的库函数使用方法场景应用常见Bug及解决方案总结 探索Python的数学魔法:Numpy库的神秘力量 背景:为什么选择Numpy? 在Python的世界中,数据处理和科学计算是不可或缺的一部分。但原生Python在处理大规模数据时可能会显