本文主要是介绍一次线上 JVM 调优实践,FullGC 40 次/天到 10 天一次的优化过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
来源 | https://blog.csdn.net/cml_blog/article/details/81057966
通过这一个多月的努力,将 FullGC 从 40 次/天优化到近 10 天才触发一次,而且 YoungGC 的时间也减少了一半以上,这么大的优化,有必要记录一下中间的调优过程。
对于JVM垃圾回收,之前一直都是处于理论阶段,就知道新生代,老年代的晋升关系,这些知识仅够应付面试使用的。前一段时间,线上服务器的FullGC非常频繁,平均一天40多次,而且隔几天就有服务器自动重启了,这表明的服务器的状态已经非常不正常了,得到这么好的机会,当然要主动请求进行调优了。未调优前的服务器GC数据,FullGC非常频繁。
首先服务器的配置非常一般(2核4G),总共4台服务器集群。每台服务器的FullGC次数和时间基本差不多。其中JVM几个核心的启动参数为:
-Xms1000M -Xmx1800M -Xmn350M -Xss300K -XX:+DisableExplicitGC -XX:SurvivorRatio=4 -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70 -XX:+CMSParallelRemarkEnabled -XX:LargePageSizeInBytes=128M -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC
-Xmx1800M:设置JVM最大可用内存为1800M。-Xms1000m:设置JVM初始化内存为1000m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。-Xmn350M:设置年轻代大小为350M。整个JVM内存大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。-Xss300K:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。
第一次优化
一看参数,马上觉得新生代为什么这么小,这么小的话怎么提高吞吐量,而且会导致YoungGC的频繁触发,如上如的新生代收集就耗时830s。初始化堆内存没有和最大堆内存一致,查阅了各种资料都是推荐这两个值设置一样的,可以防止在每次GC后进行内存重新分配。基于前面的知识,于是进行了第一次的线上调优:提升新生代大小,将初始化堆内存设置为最大内存
-Xmn350M -> -Xmn800M -XX:SurvivorRatio=4 -> -XX:SurvivorRatio=8 -Xms1000m ->-Xms1800m
将SurvivorRatio修改为8的本意是想让垃圾在新生代时尽可能的多被回收掉。就这样将配置部署到线上两台服务器(prod,prod2另外两台不变方便对比)上后,运行了5天后,观察GC结果,YoungGC减少了一半以上的次数,时间减少了400s,但是FullGC的平均次数增加了41次。YoungGC基本符合预期设想,但是这个FullGC就完全不行了。
就这样第一次优化宣告失败。
第二次优化
在优化的过程中,我们的主管发现了有个对象T在内存中有一万多个实例,而且这些实例占据了将近20M的内存。于是根据这个bean对象的使用,在项目中找到了原因:匿名内部类引用导致的,伪代码如下:
public void doSmthing(T t){redis.addListener(new Listener(){public void onTimeout(){if(t.success()){//执行操作}}});
}
由于listener在回调后不会进行释放,而且回调是个超时的操作,当某个事件超过了设定的时间(1分钟)后才会进行回调,这样就导致了T这个对象始终无法回收,所以内存中会存在这么多对象实例。通过上述的例子发现了存在内存泄漏后,首先对程序中的error log文件进行排查,首先先解决掉所有的error事件。然后再次发布后,GC操作还是基本不变,虽然解决了一点内存泄漏问题,但是可以说明没有解决根本原因,服务器还是继续莫名的重启。
内存泄漏调查
经过了第一次的调优后发现内存泄漏的问题,于是大家都开始将进行内存泄漏的调查,首先排查代码,不过这种效率是蛮低的,基本没发现问题。于是在线上不是很繁忙的时候继续进行dump内存,终于抓到了一个大对象
这个对象竟然有4W多个,而且都是清一色的ByteArrowRow对象,可以确认这些数据是数据库查询或者插入时产生的了。于是又进行一轮代码分析,在代码分析的过程中,通过运维的同事发现了在一天的某个时候入口流量翻了好几倍,竟然高达83MB/s,经过一番确认,目前完全没有这么大的业务量,而且也不存在文件上传的功能。咨询了阿里云客服也说明完全是正常的流量,可以排除攻击的可能。就在我还在调查入口流量的问题时,另外一个同事找到了根本的原因,原来是在某个条件下,会查询表中所有未处理的指定数据,但是由于查询的时候where条件中少加了模块这个条件,导致查询出的数量达40多万条,而且通过log查看当时的请求和数据,可以判断这个逻辑确实是已经执行了的,dump出的内存中只有4W多个对象,这个是因为dump时候刚好查询出了这么多个,剩下的还在传输中导致的。而且这也能非常好的解释了为什么服务器会自动重启的原因。
解决了这个问题后,线上服务器运行完全正常了,使用未调优前的参数,运行了3天左右FullGC只有5次
第二次调优
内存泄漏的问题已经解决了,剩下的就可以继续调优了,经过查看GC log,发现前三次GullGC时,老年代占据的内存还不足30%,却发生了FullGC。于是进行各种资料的调查,在https://blog.csdn.net/zjwstz/article/details/77478054 博客中非常清晰明了的说明metaspace导致FullGC的情况,服务器默认的metaspace是21M,在GC log中看到了最大的时候metaspace占据了200M左右,于是进行如下调优,以下分别为prod1和prod2的修改参数,prod3,prod4保持不变
-Xmn350M -> -Xmn800M -Xms1000M ->1800M -XX:MetaspaceSize=200M -XX:CMSInitiatingOccupancyFraction=75
和
-Xmn350M -> -Xmn600M -Xms1000M ->1800M -XX:MetaspaceSize=200M -XX:CMSInitiatingOccupancyFraction=75
prod1和2只是新生代大小不一样而已,其他的都一致。到线上运行了10天左右,进行对比:prod1:prod2:prod3:prod4:
对比来说,1,2两台服务器FullGC远远低于3,4两台,而且1,2两台服务器的YounGC对比3,4也减少了一半左右,而且第一台服务器效率更为明显,除了YoungGC次数减少,而且吞吐量比多运行了一天的3,4两台的都要多(通过线程启动数量),说明prod1的吞吐量提升尤为明显。通过GC的次数和GC的时间,本次优化宣告成功,且prod1的配置更优,极大提升了服务器的吞吐量和降低了GC一半以上的时间。
prod1中的唯一一次FullGC:
通过GC log上也没看出原因,老年代在cms remark的时候只占据了660M左右,这个应该还不到触发FullGC的条件,而且通过前几次的YoungGC调查,也排除了晋升了大内存对象的可能,通过metaspace的大小,也没有达到GC的条件。这个还需要继续调查,有知道的欢迎指出下,这里先行谢过了。
总结
通过这一个多月的调优总结出以下几点:
FullGC一天超过一次肯定就不正常了
发现FullGC频繁的时候优先调查内存泄漏问题
内存泄漏解决后,jvm可以调优的空间就比较少了,作为学习还可以,否则不要投入太多的时间
如果发现CPU持续偏高,排除代码问题后可以找运维咨询下阿里云客服,这次调查过程中就发现CPU 100%是由于服务器问题导致的,进行服务器迁移后就正常了。
数据查询的时候也是算作服务器的入口流量的,如果访问业务没有这么大量,而且没有攻击的问题的话可以往数据库方面调查
有必要时常关注服务器的GC,可以及早发现问题
以上是最近一个多月JVM调优的过程与总结,如有错误之处欢迎指正。
end
Flink 从入门到精通 系列文章
基于 Apache Flink 的实时监控告警系统关于数据中台的深度思考与总结(干干货)日志收集Agent,阴暗潮湿的地底世界
公众号(zhisheng)里回复 面经、ClickHouse、ES、Flink、 Spring、Java、Kafka、监控 等关键字可以查看更多关键字对应的文章。
点个赞+在看,少个 bug ????
这篇关于一次线上 JVM 调优实践,FullGC 40 次/天到 10 天一次的优化过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!