本文主要是介绍Java多线程包的Locks一览,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Java多线程包的Locks一览
Java多线程包提供了Locks,用作线程控制,看到这个名字自然要想起原生的Synchronized关键字,二者有什么优劣呢?
Synchronized在得不到锁时只能等待,但是Locks可以使用tryLock这样的方法
听起来好处也有限,但还是看看Locks的几个API吧
//要求获得锁,会阻塞整个线程
void lock();
//要求获得锁,不然就阻塞,但是可以被其他线程打断
void lockInterruptibly() throws InterruptedException;
//尝试获得锁
boolean tryLock();
//尝试获得锁,不然就等待
boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
//释放锁
void unlock();
让我们来看一个面无表情的代码示例:
Lock lock = new ReentrantLock();
lock.lock();
try {log.info("我获得了锁");
}finally {lock.unlock();log.info("我释放了锁");
}
如果加入它引以为傲的tryLock,则是如下写法:
ExecutorService executorService = Executors.newFixedThreadPool(2);
Lock lock = new ReentrantLock();
executorService.submit(() -> {lock.lock();try {log.info("A获得了锁,睡2秒");Thread.sleep(2000);}catch (Exception e){//}finally {lock.unlock();log.info("A释放锁");}
});
executorService.submit(() -> {boolean hasLock = lock.tryLock();try {if (hasLock){log.info("B获得了锁");}else {log.info("B没获得锁");}}finally {lock.unlock();log.info("B结束");}
});
executorService.shutdown();
executorService.awaitTermination(1, TimeUnit.MINUTES);
输出:
17:29:48.508 [pool-1-thread-2] INFO com.example.demo.LocksTest - B没获得锁
17:29:48.508 [pool-1-thread-1] INFO com.example.demo.LocksTest - A获得了锁,睡2秒
17:29:50.515 [pool-1-thread-1] INFO com.example.demo.LocksTest - A释放锁
在写这篇文章的时候,我不禁在想,已经有了上一篇文章提到的那么多控制多线程并发的工具:CountDownLatch、CyclicBarrier、Semaphore、Phaser,那么为什么还要Locks呢?
之后我看到了一个读写锁接口:读锁只能用来做读操作,当没有写操作进行时,任意线程都可以获取读锁,但写锁只能在没有任何线程读写时,由一个线程获得。
public interface ReadWriteLock {/*** Returns the lock used for reading.** @return the lock used for reading*/Lock readLock();/*** Returns the lock used for writing.** @return the lock used for writing*/Lock writeLock();
}
双读线程测试:
ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
ExecutorService executorService = Executors.newFixedThreadPool(3);
for (int i = 1; i <=2 ; i ++){int finalI = i;executorService.submit(() ->{Lock readLock = readWriteLock.readLock();log.info("线程{}准备获取读锁", finalI);readLock.lock();try {log.info("线程{}获取了读锁", finalI);Thread.sleep(3 * 1000);} catch (InterruptedException e) {e.printStackTrace();} finally {readLock.unlock();log.info("线程{}释放", finalI);}});
}
executorService.shutdown();
executorService.awaitTermination(1, TimeUnit.MINUTES);
输出:
17:41:56.493 [pool-1-thread-2] INFO com.example.demo.LocksTest - 线程2准备获取读锁
17:41:56.493 [pool-1-thread-1] INFO com.example.demo.LocksTest - 线程1准备获取读锁
17:41:56.499 [pool-1-thread-1] INFO com.example.demo.LocksTest - 线程1获取了读锁
17:41:56.499 [pool-1-thread-2] INFO com.example.demo.LocksTest - 线程2获取了读锁
17:41:59.500 [pool-1-thread-2] INFO com.example.demo.LocksTest - 线程2释放
17:41:59.500 [pool-1-thread-1] INFO com.example.demo.LocksTest - 线程1释放
可见,读锁可以同时获取
那么我如果追加一个写锁:
Thread.sleep(500);
//写1
executorService.submit(() -> {Lock writeLock = readWriteLock.writeLock();try {boolean canWrite = writeLock.tryLock();log.info("写1线程可以写吗? {}", canWrite);}finally {writeLock.unlock();}
});
//写2
executorService.submit( () -> {Lock writeLock = readWriteLock.writeLock();try {log.info("写2线程试图写入");boolean canWrite = writeLock.tryLock(4, TimeUnit.SECONDS);log.info("写2线程可以写吗? {}", canWrite);} catch (InterruptedException e) {e.printStackTrace();} finally {writeLock.unlock();log.info("写2释放");}
});
等500毫秒为了确保读锁先被获取,之后加入2个写锁,可以看到输出为:
17:47:47.532 [pool-1-thread-2] INFO com.example.demo.LocksTest - 线程2准备获取读锁
17:47:47.532 [pool-1-thread-1] INFO com.example.demo.LocksTest - 线程1准备获取读锁
17:47:47.536 [pool-1-thread-2] INFO com.example.demo.LocksTest - 线程2获取了读锁
17:47:47.536 [pool-1-thread-1] INFO com.example.demo.LocksTest - 线程1获取了读锁
17:47:48.032 [pool-1-thread-3] INFO com.example.demo.LocksTest - 写1线程可以写吗? false
17:47:48.033 [pool-1-thread-4] INFO com.example.demo.LocksTest - 写2线程试图写入
17:47:50.538 [pool-1-thread-1] INFO com.example.demo.LocksTest - 线程1释放
17:47:50.538 [pool-1-thread-2] INFO com.example.demo.LocksTest - 线程2释放
17:47:50.538 [pool-1-thread-4] INFO com.example.demo.LocksTest - 写2线程可以写吗? true
17:47:50.539 [pool-1-thread-4] INFO com.example.demo.LocksTest - 写2释放
Condition
Locks贴心地加入了条件,使得一些操作更加形象,比如你需要维护一个线程安全的栈,且容量只有5,那么
写入操作:
try {lock.lock();while (stack.size() == 5) {notFull.await();}stack.push("" + finalI);notEmpty.signalAll();
} catch (InterruptedException e) {e.printStackTrace();
} finally {lock.unlock();
}
在notFull.await()时,会执行一个原子性的操作,即释放锁。
释放锁等待弹出操作:
try {lock.lock();while (stack.size() == 0){notEmpty.await();}String str = stack.pop();log.info(str);notFull.signalAll();
} catch (InterruptedException e) {e.printStackTrace();
} finally {lock.unlock();
}
使用容量为3的线程测试,首先执行4次入栈,然后执行1次弹出,预期结果是,前三次成功,第四次阻塞,等待弹出后,第四次完成
执行结果如下:
18:45:27.712 [pool-1-thread-1] INFO com.example.demo.LocksTest - 写线程1 尝试获取锁
18:45:27.712 [pool-1-thread-3] INFO com.example.demo.LocksTest - 写线程3 尝试获取锁
18:45:27.716 [pool-1-thread-1] INFO com.example.demo.LocksTest - 写线程1 获取了锁
18:45:27.717 [pool-1-thread-1] INFO com.example.demo.LocksTest - 写线程1 写入完毕
18:45:27.712 [pool-1-thread-4] INFO com.example.demo.LocksTest - 写线程4 尝试获取锁
18:45:27.712 [pool-1-thread-2] INFO com.example.demo.LocksTest - 写线程2 尝试获取锁
18:45:27.717 [pool-1-thread-3] INFO com.example.demo.LocksTest - 写线程3 获取了锁
18:45:27.717 [pool-1-thread-3] INFO com.example.demo.LocksTest - 写线程3 写入完毕
18:45:27.717 [pool-1-thread-4] INFO com.example.demo.LocksTest - 写线程4 获取了锁
18:45:27.717 [pool-1-thread-4] INFO com.example.demo.LocksTest - 写线程4 写入完毕
18:45:27.717 [pool-1-thread-2] INFO com.example.demo.LocksTest - 写线程2 获取了锁
18:45:27.717 [pool-1-thread-2] INFO com.example.demo.LocksTest - 写线程2 被阻塞,因为栈满
18:45:28.214 [pool-1-thread-5] INFO com.example.demo.LocksTest - 4
18:45:28.214 [pool-1-thread-2] INFO com.example.demo.LocksTest - 写线程2 写入完毕
观察最后4行,如预期一致。
在JDK8中,引入了一种新的锁,StampedLock,读写分离的乐观锁,但我在工作中暂时没有遇到过这种需求,因此不再班门弄斧,有兴趣的读者可以自行搜索。
小编是一个有着5年工作经验的java'开发工程师,关于java'编程,自己有做材料的整合,一个完整的java编程学习路线,学习材料和工具,能够进我的群收取,免费送给**723197800**大家,希望你也能凭着自己的努力,成为下一个优秀的程序员。
这篇关于Java多线程包的Locks一览的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!