本文主要是介绍Python解析labelme生成的json文件(bbox标注),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
json文件
{
"version": "3.16.7",
"imageWidth": 1024,
"lineColor": [
0,
255,
0,
128
],
"flags": {},
"fillColor": [
255,
0,
0,
128
],
"imageData": "/9j/4AAQSkZJRgABAQAAAQABAAD
"imagePath": "../airplane/0a7cbe64b71d8026.jpg",
"shapes": [
{
"fill_color": null,
"line_color": null,
"flags": {},
"shape_type": "rectangle",
"points": [
[
639.5679012345679,
327.8641975308642
],
[
746.9753086419753,
403.1728395061728
]
],
"label": "cargo"
}
],
"imageHeight": 678
}
解析代码(生成yolo的标签文件)
#!/usr/bin/python3
# -*- coding: utf-8 -*-import json
import osdef convert(img_size, box):dw = 1./(img_size[0])dh = 1./(img_size[1])x = (box[0] + box[2])/2.0 - 1y = (box[1] + box[3])/2.0 - 1w = box[2] - box[0]h = box[3] - box[1]x = x*dww = w*dwy = y*dhh = h*dhreturn (x,y,w,h)def decode_json(json_floder_path,json_name):txt_name = '/home/deepnorth/A_codeTest/txt_label/' + json_name[0:-5] + '.txt'txt_file = open(txt_name, 'w')json_path = os.path.join(json_floder_path, json_name)data = json.load(open(json_path, 'r', encoding='utf-8'))img_w = data['imageWidth']img_h = data['imageHeight']for i in data['shapes']:if (i['shape_type'] == 'rectangle' and i['label'] == 'cargo'):x1 = int(i['points'][0][0])y1 = int(i['points'][0][1])x2 = int(i['points'][1][0])y2 = int(i['points'][1][1])bb = (x1,y1,x2,y2)bbox = convert((img_w,img_h),bb)txt_file.write( '0' + " " + " ".join([str(a) for a in bbox]) + '\n')if __name__ == "__main__":json_floder_path = '/home/deepnorth/A_codeTest/label'json_names = os.listdir(json_floder_path)for json_name in json_names:decode_json(json_floder_path,json_name)
这篇关于Python解析labelme生成的json文件(bbox标注)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!