算法系列之一 :Google方程式

2024-05-01 14:58
文章标签 算法 系列 google 方程式

本文主要是介绍算法系列之一 :Google方程式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法系列之一 Google方程式

有一个字符组成的等式:WWWDOT - GOOGLE = DOTCOM,每个字符代表一个0-9之间的数字,WWWDOT、GOOGLE和DOTCOM都是合法的数字,不能以0开头。请找出一组字符和数字的对应关系,使它们互相替换,并且替换后的数字能够满足等式。这个字符等式是Google公司能力倾向测试实验室的一道题目,这种题目主要考察人的逻辑推导能力和短期记忆能力,通常棋下的好的人解决这类问题会更得心应手一些(飞行棋例外)。此类型的题目有很多变种,各种编程比赛中常常能见到它们的身影。比如2005年的GOOGLE中国编程挑战赛第二轮淘汰赛有一道名为“SecretSum”的500分的竞赛题,与本题如出一辙,只不过字母都是三个,而且用的是加法计算。现在言归正传,先看看如何分析这个问题。

以人的思维方式分析问题

将横式改成竖式可能更直观一些:

根据以上竖式减法,从左向右依次可以得到6个算式,分别是:

W – G = D (算式 1)

W – O = O (算式 2)

W – O = T (算式 3)

D – G = C (算式 4)

O – L = O (算式 5)

T – E = M (算式 6)

根据以上6个算式可以分析出两个关键信息:一个是W要足够大,因为考虑到它可能被借位的情况还要等于G和D的和;另一个则是本问题的突破口,就是算式2和算式3两次出现的W – O计算。现在分析算式2和算式3,根据是否需要借位,算式2和算式3一共有四种借位组合结果,下面分别对这四种借位组合结果进行分析。

1. W – O = T不需要借位,W – O = O也不需要借位

由于W – O = T和W – O = O都不需要借位,则可由算式2变形得到算式1.1:

W = 2O (算式1.1)

将算式1.1带入算式3,又可以得到算式1.2:

O = T (算式 1.2)

根据算式1.2,O和T代表的数字是同一个数字,这与题目要求不符,因此,这种借位组合不能得到正确的结果。

2. W – O = T需要借位,W – O = O不需要借位

根据借位情况,对算式2和算式3进行借位修正,得到两个修正算式:

W – 1 – O = O (算式2.1)

W + 10 – O = T (算式2.2)

由算式2.1变形得到算式2.3:

W = 2O + 1 (算式2.3)

将算式2.3带入算式2.2可以得到算式2.4:

T = O + 11 (算式2.4)

对算式2.3分析,由于W是个位数,最大值是9,所以O的取值只能是1-4,但是无论如何,由算式2.4计算出的T都超过9,这与题目要求不符,因此,这种情况也是无解的情况。

3. W – O = T不需要借位,W – O = O需要借位

根据借位情况,对算式2和算式3进行借位修正,得到两个修正算式:

W + 10 – O = O (算式3.1)

W – O = T (算式3.2)

由算式3.1变形得到算式3.3:

W = 2O - 10 (算式3.3)

将算式3.3带入算式3.2由可得到算式3.4:

O – 10 = T (算式3.4)

O显然是不能比10大的个位数,因此,这种情况也是无解的情况

4. W – O = T需要借位,W – O = O也需要借位

根据借位情况,对算式2和算式3进行借位修正,得到两个修正算式:

W – 1 + 10 – O = O (算式4.1)

W + 10 – O = T (算式4.2)

由算式4.1变形得到算式4.3:

W = 2O - 9 (算式4.3)

将算式4.3代入算式4.2得到算式4.4:

O + 1 = T (算式4.4)

由于W不能小于0,因此,根据算式4.3,O的取值最小为5。根据算式4.4继续分析,因为T不能大于9,因此O的最大值只能取值为8。根据O的取值区间[5,8],可依次计算出W和T的值,如下表所示:

O

W

T

5

1

6

6

3

7

7

5

8

8

7

9

已知O、W、T的取值,可以进一步推算其他字符代表的数字,上表中得到了四组目前合法的取值,但是并不是四组取值都能最终推算出正确的结果,本题的答案只有一个,也就是说只有一组O、W、T的取值是正确的,下面就分别进行分析。

O = 5, W = 1, T = 7

在这种情况下,考察算式1:W – G = D,W = 1显然无法满足此种情况,更何况算式2: W – O = O还要从它这里借位,因此,这种情况无解。

O = 6, W = 3, T = 7

在这种情况下,算式2: W – O = O还要从它这里借位,因此算式1:W – G = D对应的实际情况是2 – G = D,G和D不能同时为1,而且G和D都是第一位数字,不能是0,因此无法满足算式1,这种情况也是无解。

O = 7, W = 5, T = 8

在这种情况下,需要考察另另外两个关键算式,分别是算式5和算式6。根据这两个算式是否需要借位进行不同的假设,根据组合,仍然有四种假设,下面分别分析这四种假设:

假设一:算式5需要借位,算式6不需要借位。则此时算式5可修正为O + 10 – L = O,推算出L = 10,显然不符合题意,假设一不成立;

假设二:算式5需要借位,算式6需要借位,则算式5和算式6应该修正为算式4.3.1和算式4.3.2:

O -1 + 10 – L = O (算式4.3.1)

T + 10 – E = M (算式4.3.2)

因为已知T=8,带入4.3.2可得E+M=18,显然对于两个不相同的个位数无法满足这个等式,因此假设二也不成立;

假设三:算式5不需要借位,算式6不需要借位,此时根据算式6可知E和M的和是8(T=8),排除E=M=4的情况后,E和M的组合可以是(1,7)、(2,6)和(3,5),又因为数字5和7分别被W和O使用,因此E和M只能是2或6。再回头来看算式1,因为算式2需要借位,算式1实际相当于G + D = 4,G和D只能取值1和3,若G=1,D=3,则根据算式4计算出C=2,这与E或M矛盾。若G=3,D=1,则算式4需要借位,这又与算式3的假设矛盾。由此看来,假设三也不能得到正确的结果;

假设四:算式5不需要借位,算式6需要借位,此时根据算式5被修正为O – 1 – L = O,这种情况下也是无解的。

O = 8, W = 7, T = 9

在这种情况下,根据算式5和算式6是否借位的假设,仍然有四种假设,下面分别分析这四种假设:

假设一:算式5需要借位,算式6不需要借位。则此时算式5可修正为O + 10 – L = O,推算出L = 10,显然不符合题意,假设一不成立;

假设二:算式5需要借位,算式6需要借位,则算式5和算式6应该修正为算式4.4.1和算式4.4.2:

O -1 + 10 – L = O (算式4.4.1)

T + 10 – E = M (算式4.4.2)

因为已知T=9,带入4.4.2可得E+M=19,两个不同的个位数的和不可能大于18,因此假设二也不成立;

假设三:算式5不需要借位,算式6不需要借位,此时根据算式6可知E和M的和是9(T=9),E和M的组合可以是(1,8)、(2,7) 、(4,5)和(3,6),又因为数字8和7分别被O和W使用,因此E和M只能是(4,5)和(3,6)。进一步假设E=4,M=5(反过来E=5,M=4是一样的,不影响分析)。再看算式1,因为算式2需要借位,算式1实际相当于G + D = 6,由于M或E是5,所以G和D只能取值2和4。若G=2,D=4,则根据算式4计算出C=2,这与G=2矛盾。若G=4,D=2,则算式4需要借位,这又与算式3的假设矛盾,因此E=4,M=5的情况无解。再次进一步假设E=3,M=6(反过来E=6,M=3是一样的,不影响分析)。同样再看算式1,G和D的值可取是(2,4)和(1,5),G和D取值1和2的情况刚刚分析过无解,因此G和D的取值只能是1和5,前面分析过,算式4没有借位,也就是说要保证D > G,因此,D=5,G=1,根据算式4计算出C=4,这样就得到了一组解:O = 8,W = 7,T = 9,D = 5,L = 0, G = 1,C = 4,E = 3/6,M = 6/3。最终的等式是:

777589 - 188103 = 589486

777589 - 188106 = 589483

假设四:算式5不需要借位,算式6需要借位,此时根据算式5被修正为O – 1 – L = O,这种情况下也是无解的。

完整的分析过程结束,得到了一组答案,事实上通过计算机穷举算法也只能得到这一组结果,下面就看看如何用计算机算法求解本题的答案。

用计算机穷举所有的解

以上是用人的思维方式的解题过程,如果方法正确,加上运气好(三次假设都是正确的,避免在错误分支上浪费时间),两分钟内就可得到结果。但是考虑到更通用的情况,字母数字没有规律,也没有可供分析的入手点和线索,比如:

AAB – BBC = CCD

这样的问题,该什么方法解决呢?只能“猜想”,用穷举的方法试探每一种猜想,对每个字母和数字穷举所有可能的组合,直到得到正确的结果。当然,这样的力气活交给计算机做是最合适不过了。

1. 建立数学模型

要想让计算机解决问题,就要让计算机能够理解题目,这就需要建立一个计算机能够识别、处理的数学模型,首先要解决的问题就是建立字母和数字的映射关系的数学模型。本题的数学模型很简单,就是一个字母二元组:{char, number}。考察等式:

WWWDOT - GOOGLE = DOTCOM

共出现了9个不同的字母:W、D、O、T、G、L、E、C和M,因此,最终的解应该是9个字母对应的字母二元组向量:[ {'W', 7}, {'D', 5}, {'O', 8}, {'T', 9}, {'G', 1}, {'L', 0}, {'E', 3}, {'C', 4}, {'M', 6} ]。穷举算法就是对这个字母二元组向量中每个字母二元组的number元素进行穷举,number的穷举范围就是0-9共10个数字,当然,根据题目要求,有一些字符不能为0,比如W、G和D。排列组合问题的穷举多使用多重循环,看样子这个穷举算法应该是9重循环了,在每层循环中对一个字母进行从0到9遍历。问题是,必须这样吗,对于更通用的情况,不是9个字母的问题怎么办?首先思考一下是否每次都要遍历0-9。题目要求每个字母代表一个数字,而且不重复,很显然,对每个字母进行的并不是排列,而是某种形式的组合,举个例子,就是如果W字母占用了数字7,那么其它字母就肯定不是7,所以对D字母遍历是就可以跳过7。进一步,假设某次遍历的字母二元组向量中除M字母外其它8个字母已经有对应的数字了,比如:

[ {'W', 7}, {'D', 5}, {'O', 8}, {'T', 9}, {'G', 1}, {'L', 0}, {'E', 3}, {'C', 4}, {'M', ?} ] (序列-1)

那么M的可选范围就只有2和6,显然没必要使用9重循环。

现在换一种想法,对9个二元组的向量进行遍历,可以分解为两个步骤,首先确定第一个二元组的值,然后对剩下的8个二元组进行遍历。显然这是一种递归的思想(分治),算法很简单,但是要对10个数字的使用情况进行标识,对剩下的二元组进行遍历时只使用没有占用标识的数字。因此还需要一个标识数字占用情况的数字二元组定义,这个二元组可以这样定义:{number, using},0-9共有10个数字,因此需要维护一个长度为10的数字二元组向量。数字二元组向量的初始值是:

[{0, false}, {1, false},{2, false},{3, false},{4, false},{5, false},{6, false},{7, false},{8, false},{9, false}] (序列-2)

每进行一重递归就有一个数字的using标志被置为true,当字母二元组向量得到(序列-1)的结果时,对应的数字二元组向量的值应该是:

[{0, true}, {1, true},{2, false},{3, true},{4, true},{5, true},{6, false},{7, true},{8, true},{9, true}] (序列-3)

此时遍历这个数字二元组向量就可以知道M字母的可选值只能是2或6。

穷举遍历的结束条件是每层递归中遍历完所有using标志是false的数字,最外一层遍历完所有using标志是false的数字就结束了算法。

根据题目要求,开始位置的数字不能是0,也就是W、G和D这三个字母不能是0,这是一个“剪枝”条件,要利用起来,因此,对字母二元组进行扩充成字母三元组,添加一个leading标志:{char, number, leading}。下面就是这个数学模型的C语言定义:

4typedef struct

5{

6 char c;

7 int value;

8 bool leading;

9}CharItem;

10

11typedef struct

12{

13 bool used;

14 int value;

15}CharValue;

根据此数学模型初始化字母三元组和数字二元组向量:

29

30 CharItem char_item[max_char_count] =

31 {

32 { 'W', -1, true }, { 'D', -1, true }, { 'O', -1, false },

33 { 'T', -1, false }, { 'G', -1, true }, { 'L', -1, false },

34 { 'E', -1, false }, { 'C', -1, false }, { 'M', -1, false }

35 };

36

37 CharValue char_val[max_number_count] =

38 {

39 {false, 0}, {false, 1}, {false, 2}, {false, 3},

40 {false, 4}, {false, 5}, {false, 6}, {false, 7},

41 {false, 8}, {false, 9}

42 };

43

2. 穷举算法

建立数学模型,其实就是为了让计算机理解题目并处理相关的数据,算法就是告诉计算机如何使用这些模型中的数据。本文介绍的是穷举算法,算法的核心其实前面已经提到了,就是穷举所有的字母和数字的组合,对每种组合进行合法性判断,如果是合法的组合,就输出结果。

整个算法的核心是SearchingResult()函数,其实这个函数非常简单:

54

55void SearchingResult(CharItem ci[max_char_count],

56 CharValue cv[max_number_count],

57 int index, CharListReadyFuncPtr callback)

58{

59 if(index == max_char_count)

60 {

61 callback(ci);

62 return;

63 }

64

65 for(int i = 0; i < max_number_count; ++i)

66 {

67 if(IsValueValid(ci[index], cv[i]))

68 {

69 cv[i].used = true;/*set used sign*/

70 ci[index].value = cv[i].value;

71 SearchingResult(ci, cv, index + 1, callback);

72 cv[i].used = false;/*clear used sign*/

73 }

74 }

75}

76

SearchingResult()函数有四个参数,ci就是存储遍历结果的字母三元组向量,cv是存储遍历过程中数字占用情况的数字二元组向量,index是当前处理的字母三元组在字母三元组向量中的位置索引,0表示第一个字母三元组。callback是一个回调函数,当ci中所有三元组都分配了数字,就调用callback对这组解进行判断,如果满足算式就输出结果。SearchingResult()函数的代码分两部分,前一部分是结束条件判断和结果输出,后一部分是算法的关键。算法就是遍历cv中的所有数字二元组,对于每一个可用的数字(当前没有被占用,并且满足第一个数字不是0的要求),首先设置占用标志,然后将当前字母三元组的值与这个数字的值绑定,最后递归处理下一个字母三元组。

SearchingResult()函数是一个通用过程,负责字母和数字的组合,回调函数(callback)负责根据题目要求对SearchingResult()函数得到的字母和数字的组合进行筛选,只输出正确的组合。对于本题,回调函数可以这样实现:

6

7void OnCharListReady(CharItem ci[max_char_count])

8{

9 char *minuend = "WWWDOT";

10 char *subtrahend = "GOOGLE";

11 char *diff = "DOTCOM";

12

13 int m = MakeIntegerValue(ci, minuend);

14 int s = MakeIntegerValue(ci, subtrahend);

15 int d = MakeIntegerValue(ci, diff);

16 if((m - s) == d)

17 {

18 std::cout << m << " - " << s << " = " << d << std::endl;

19 }

20}

21

3. 结果验证

根据char_item和char_val的初始数据,求解本题的Google方程式:

SearchingResult(char_item, char_val, 0, OnCharListReady);

穷举算法可以得到两个结果(M和E可以互换):

777589 - 188103 = 589486

777589 - 188106 = 589483

由于算法具有通用性,对于前文例子中的等式:

AAB – BBC = CCD

只需要构造新的字母三元组向量,并修改回调函数的过滤数据即可。新的字母三元组可按照如下方式构造:

33

34 CharItem char_item[max_char_count] = { {'A', -1, true}, {'B', -1, true}, {'C', -1, true},

35 {'D', -1, false} };

36

回调函数与前文的OnCharListReady()函数类似,此处不再列出。根据新的字符三元组和回调函数运行算法,可以得到13组结果:

443 - 331 = 112

553 - 332 = 221

554 - 441 = 113

665 - 551 = 114

774 - 443 = 331

775 - 552 = 223

776 - 661 = 115

885 - 553 = 332

886 - 662 = 224

887 - 771 = 116

995 - 554 = 441

997 - 772 = 225

998 - 881 = 117

对于加法、乘法和除法算式,同样只要使用不用的回调函数进行结果判断即可,不需要修改SearchingResult()函数,例如加法算式:

ABC + ABC = BCE

可以得到5组结果:

124 + 124 = 248

125 + 125 = 250

249 + 249 = 498

374 + 374 = 748

375 + 375 = 750

完整的实现代码请点击这里查看

这篇关于算法系列之一 :Google方程式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/951977

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言