模型智能体开发之metagpt-单智能体实践

2024-05-01 13:52

本文主要是介绍模型智能体开发之metagpt-单智能体实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

需求分析

  1. 根据诉求完成函数代码的编写,并实现测试case,输出代码

代码实现

定义写代码的action

  1. action是动作的逻辑抽象,通过将预设的prompt传入llm,来获取输出,并对输出进行格式化

  2. 具体的实现如下

    1. 定义prompt模版

      1. prompt是传给llm的入参,所以llm对prompt的需求解析越准确,那么llm的输出就会越符合我们的诉求
      2. 如何抽象出最合适的prompt模版
      PROMPT_TEMPLATE = """Write a python function that can {instruction} and provide two runnnable test cases.Return ```python your_code_here ```with NO other texts,your code:"""
      
    2. 调用llm生成代码

      1. 通过传入的instruction参数来格式化llm入参,之后通过aask调用llm进行输出。因为llm的输出是并不一定会符合我们的诉求,所以需要按照需求对output进行格式化
      async def run(self, instruction: str):prompt = self.PROMPT_TEMPLATE.format(instruction=instruction)rsp = await self._aask(prompt)code_text = SimpleWriteCode.parse_code(rsp)return code_text  
      
    3. 对llm output进行格式化

      1. 正则表达式提取其中的code部分,llm在返回给我们代码时通常带有一些格式化标识,而这些格式化标识往往是我们所不需要的
      2. 格式方法:
       @staticmethoddef parse_code(rsp):pattern = r'```python(.*)```'match = re.search(pattern, rsp, re.DOTALL)code_text = match.group(1) if match else rspreturn code_text
      
  3. 完整代码

    import asyncio
    import re
    import subprocessimport firefrom metagpt.actions import Action
    from metagpt.logs import logger
    from metagpt.roles.role import Role, RoleReactMode
    from metagpt.schema import Messageclass SimpleWriteCode(Action):PROMPT_TEMPLATE: str = """Write a python function that can {instruction} and provide two runnnable test cases.Return ```python your_code_here ```with NO other texts,your code:"""name: str = "SimpleWriteCode"async def run(self, instruction: str):prompt = self.PROMPT_TEMPLATE.format(instruction=instruction)rsp = await self._aask(prompt)code_text = SimpleWriteCode.parse_code(rsp)return code_text@staticmethoddef parse_code(rsp):pattern = r"```python(.*)```"match = re.search(pattern, rsp, re.DOTALL)code_text = match.group(1) if match else rspreturn code_text
    

创建一个role

  1. 初始化上下文

    class SimpleCoder(Role):name: str = "Alice"profile: str = "SimpleCoder"def __init__(self, **kwargs):super().__init__(**kwargs)self.set_actions([SimpleWriteCode])
    
    1. 可以看到创建了一个名为SimpleCoder的类,继承了Role,标明当前类是一个role的定位
    2. 其中name指定了当前role的名称
    3. 其中name指定了当前role的类型
    4. 然后我们重写了__init__方法,
    5. 绑定要执行的action是SimpleWriteCode,这个Action 能根据我们的需求生成我们期望的代码,定义的行动SimpleWriteCode会被加入到代办self._rc.todo中,
  2. 定义执行规则

    async def _act(self) -> Message:logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")todo = self.rc.todo  # todo will be SimpleWriteCode()msg = self.get_memories(k=1)[0]  # find the most recent messagescode_text = await todo.run(msg.content)msg = Message(content=code_text, role=self.profile, cause_by=type(todo))return msg 
    
    1. 重写_act,编写智能体具体的行动逻辑
    2. self.rc.todo:待办事项
    3. self.get_memories(k=1)[0]:获取最新的一条memory,即本次case里面的用户下达的指令
      1. 在本次的case里面,当用户输出instruction的时候,role需要把instruction传递给action,这里就涉及到了user如何传递消息给agent的部分,是通过memory来传递的
      2. memory作为agent的记忆合集,当role在进行初始化的时候,role就会初始化一个memory对象来作为self._rc.memory属性,在之后的_observe中存储每一个message,以便后续的检索,所以也可以理解role的memory就是一个含有message的list
      3. 当需要获取memory(llm的对话context)的时候,就可以使用get_memories(self, k=0) -> list[Message] 方法
    4. todo.run(msg.content):使用待办事项来处理最新一条memory
    5. Message:作为metagpt里面统一的消息处理格式
  3. 完整代码

        class SimpleCoder(Role):name: str = "Alice"profile: str = "SimpleCoder"def __init__(self, **kwargs):super().__init__(**kwargs)self.set_actions([SimpleWriteCode])async def _act(self) -> Message:logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")todo = self.rc.todo  # todo will be SimpleWriteCode()msg = self.get_memories(k=1)[0]  # find the most recent messagescode_text = await todo.run(msg.content)msg = Message(content=code_text, role=self.profile, cause_by=type(todo))return msg```
  4. 测试demo

    1. 代码

      async def main():msg = "write a function that calculates the sum of a list"role = SimpleCoder()logger.info(msg)result = await role.run(msg)logger.info(result)asyncio.run(main())
      
    2. 运行

      1. 如下图,role alice 关联到了action,并且action调用了llm,获取到的llm输出是一条代码。注意,代码格式有python格式化标识,所以在代码实现层面我们通过parse_code方法去掉了python的格式化标识。
      2. llm输出分为两部分,一部分是方法,另外一部分是测试case
        在这里插入图片描述

demo如果想正常运行的话,需要调用llm的key,环境配置可以参照 metagpt环境配置参考

这篇关于模型智能体开发之metagpt-单智能体实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/951868

相关文章

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1