不科学上网使用Hugging Face的Transformers库

2024-05-01 12:52

本文主要是介绍不科学上网使用Hugging Face的Transformers库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考

Program Synthesis with CodeGen — ROCm Blogs (amd.com)

HF-Mirror - Huggingface 镜像站

https://huggingface.co/docs/transformers/v4.40.1/zh/installation#%E7%A6%BB%E7%BA%BF%E6%A8%A1%E5%BC%8F

准备

apt show rocm-libs -a
pip install transformers
python -m pip install huggingface_hub
export HF_ENDPOINT=https://hf-mirror.com
huggingface-cli download --resume-download gpt2 --local-dir gpt2
wget https://hf-mirror.com/hfd/hfd.sh
chmod a+x hfd.sh
sudo snap install aria2c
sudo apt install git-lfs
./hfd.sh Salesforce/codegen-350M-mono  --tool aria2c -x 4

使用

(base) user@user-System:~$ python
Python 3.12.1 | packaged by Anaconda, Inc. | (main, Jan 19 2024, 15:51:05) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> import time 
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> torch.set_default_device("cuda")
>>> start_time = time.time()
>>> checkpoint = "./codegen-350M-mono"
>>> model = AutoModelForCausalLM.from_pretrained(checkpoint)
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
>>> print(f"Loaded in {time.time() - start_time: .2f} seconds")
Loaded in  70.20 seconds
>>> print(model)
CodeGenForCausalLM((transformer): CodeGenModel((wte): Embedding(51200, 1024)(drop): Dropout(p=0.0, inplace=False)(h): ModuleList((0-19): 20 x CodeGenBlock((ln_1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)(attn): CodeGenAttention((attn_dropout): Dropout(p=0.0, inplace=False)(resid_dropout): Dropout(p=0.0, inplace=False)(qkv_proj): Linear(in_features=1024, out_features=3072, bias=False)(out_proj): Linear(in_features=1024, out_features=1024, bias=False))(mlp): CodeGenMLP((fc_in): Linear(in_features=1024, out_features=4096, bias=True)(fc_out): Linear(in_features=4096, out_features=1024, bias=True)(act): NewGELUActivation()(dropout): Dropout(p=0.0, inplace=False))))(ln_f): LayerNorm((1024,), eps=1e-05, elementwise_affine=True))(lm_head): Linear(in_features=1024, out_features=51200, bias=True)
)
>>> def run_inference(raw_input):
...     start_time = time.time()
...     inputs = tokenizer(raw_inputs, return_tensors="pt", return_attention_mask=False)
...     outputs = model.generate(**inputs,max_length=1000)
...     latency = time.time() - start_time
...     throughput = len(outputs[0]) / latency
...     print(f"Latency:    {latency: .2f} seconds")
...     print(f"Throughput: {throughput: .2f} tokens/s")
...     text = tokenizer.batch_decode(outputs)[0]
...     print(text)
... 
>>> raw_inputs = ''' 
... Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.
... 
... Notice that the solution set must not contain duplicate triplets.
... '''
>>> text = run_inference(raw_inputs)
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.
Latency:     12.16 seconds
Throughput:  42.94 tokens/sGiven an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i!= j, i!= k, and j!= k, and nums[i] + nums[j] + nums[k] == 0.Notice that the solution set must not contain duplicate triplets.Example 1:Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
-1 and -1 are triplets.
-1 and 0 are not triplets.
-1 and 1 are not triplets.
-4 and -1 are not triplets.
-4 and -1 are triplets.
-4 and 0 are not triplets.
-4 and 1 are triplets.
-1 and 2 are not triplets.Example 2:Input: nums = []
Output: []Example 3:Input: nums = [0]
Output: []Constraints:1 <= nums.length <= 104
-104 <= nums[i] <= 104"""class Solution:def threeSum(self, nums: List[int]) -> List[List[int]]:nums.sort()res = []for i in range(len(nums)):if i > 0 and nums[i] == nums[i-1]:continuel, r = i+1, len(nums)-1while l < r:if nums[i] + nums[l] + nums[r] == 0:res.append([nums[i], nums[l], nums[r]])while l < r and nums[l] == nums[l+1]:l += 1while l < r and nums[r] == nums[r-1]:r -= 1l += 1r -= 1elif nums[i] + nums[l] + nums[r] > 0:r -= 1else:l += 1return res
<|endoftext|>
>>> raw_inputs = ''' 
... Given a 1-indexed array of integers numbers that is already sorted in non-decreasing order, find two numbers such that they add up to a specific target number. Let these two numbers be numbers[index1] and numbers[index2] where 1 <= index1 < index2 <= numbers.length.
... 
... Return the indices of the two numbers, index1 and index2, added by one as an integer array [index1, index2] of length 2.
... 
... The tests are generated such that there is exactly one solution. You may not use the same element twice.
... 
... Your solution must use only constant extra space.
... '''
>>> text = run_inference(raw_inputs)
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.
Latency:     8.65 seconds
Throughput:  61.84 tokens/sGiven a 1-indexed array of integers numbers that is already sorted in non-decreasing order, find two numbers such that they add up to a specific target number. Let these two numbers be numbers[index1] and numbers[index2] where 1 <= index1 < index2 <= numbers.length.Return the indices of the two numbers, index1 and index2, added by one as an integer array [index1, index2] of length 2.The tests are generated such that there is exactly one solution. You may not use the same element twice.Your solution must use only constant extra space.Example 1:Input: numbers = [2,7,11,15], target = 9
Output: [1,2]
Explanation: The sum of 2 and 7 is 9. Therefore index1 = 1, index2 = 2.
Example 2:Input: numbers = [2,3,4], target = 6
Output: [1,3]
Explanation: The sum of 2 and 3 is 6. Therefore index1 = 1, index2 = 3.
Example 3:Input: numbers = [2,3,4], target = 18
Output: [1,3]
Explanation: The sum of 2 and 3 is 6. Therefore index1 = 1, index2 = 3.
Example 4:Input: numbers = [2,3,4], target = 0
Output: [1,2]
Explanation: The sum of 2 and 0 is 0. Therefore index1 = 1, index2 = 2.
Example 5:Input: numbers = [2,3,4], target = 10
Output: [1,3]
Explanation: The sum of 2 and 3 is 6. Therefore index1 = 1, index2 = 3.Constraints:1 <= numbers.length <= 10^4
-10^9 <= numbers[i] <= 10^9
-10^9 <= target <= 10^9"""class Solution:def twoSum(self, numbers: List[int], target: int) -> List[int]:for i in range(len(numbers)):for j in range(i+1, len(numbers)):if numbers[i] + numbers[j] == target:return [i, j]return []
<|endoftext|>
>>> raw_inputs = ''' 
... Implement the cross entropy loss function
... '''
>>> text = run_inference(raw_inputs)
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.
Latency:     21.40 seconds
Throughput:  46.73 tokens/sImplement the cross entropy loss function"""import torch
import torch.nn as nn
import torch.nn.functional as Fclass CrossEntropyLoss(nn.Module):def __init__(self, ignore_index=255):super(CrossEntropyLoss, self).__init__()self.ignore_index = ignore_indexdef forward(self, inputs, targets):n = inputs.size(0)log_probs = F.log_softmax(inputs, dim=1)loss = -torch.sum(targets * log_probs, dim=1)loss = torch.mean(loss)return lossclass DiceLoss(nn.Module):def __init__(self, ignore_index=255):super(DiceLoss, self).__init__()self.ignore_index = ignore_indexdef forward(self, inputs, targets):n = inputs.size(0)log_probs = F.log_softmax(inputs, dim=1)loss = -torch.sum(targets * log_probs, dim=1)loss = torch.mean(loss)return lossclass DiceLoss2(nn.Module):def __init__(self, ignore_index=255):super(DiceLoss2, self).__init__()self.ignore_index = ignore_indexdef forward(self, inputs, targets):n = inputs.size(0)log_probs = F.log_softmax(inputs, dim=1)loss = -torch.sum(targets * log_probs, dim=1)loss = torch.mean(loss)return lossclass DiceLoss3(nn.Module):def __init__(self, ignore_index=255):super(DiceLoss3, self).__init__()self.ignore_index = ignore_indexdef forward(self, inputs, targets):n = inputs.size(0)log_probs = F.log_softmax(inputs, dim=1)loss = -torch.sum(targets * log_probs, dim=1)loss = torch.mean(loss)return lossclass DiceLoss4(nn.Module):def __init__(self, ignore_index=255):super(DiceLoss4, self).__init__()self.ignore_index = ignore_indexdef forward(self, inputs, targets):n = inputs.size(0)log_probs = F.log_softmax(inputs, dim=1)loss = -torch.sum(targets * log_probs, dim=1)loss = torch.mean(loss)return lossclass DiceLoss5(nn.Module):def __init__(self, ignore_index=255):super(DiceLoss5, self).__init__()self.ignore_index = ignore_indexdef forward(self, inputs, targets):n = inputs.size(0)log_probs = F.log_softmax(inputs, dim=1)loss = -torch.sum(targets * log_probs, dim=1)loss = torch.mean(loss)return lossclass DiceLoss6(nn.Module):def __init__(self, ignore_index=255):super(DiceLoss6, self).__init__()self.ignore_index = ignore_indexdef forward(self, inputs, targets):n = inputs.size(0)log_probs = F.log_softmax(inputs, dim=1)loss = -torch.sum(targets * log_probs, dim=1)loss = torch.mean(loss)return lossclass DiceLoss7(nn.Module):def __init__(self, ignore_index=255):super(DiceLoss7,
>>> 
>>> 
>>> 
>>> raw_inputs = ''' 
... Implement binary search
... '''
>>> text = run_inference(raw_inputs)
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.
Latency:     2.91 seconds
Throughput:  48.42 tokens/sImplement binary search
"""def binary_search(arr, target):low = 0high = len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return midelif arr[mid] < target:low = mid + 1else:high = mid - 1return -1arr = [1,2,3,4,5,6,7,8,9,10]
target = 10
print(binary_search(arr, target))<|endoftext|>
>>> exit()

ChatGPT

Hugging Face 的 Transformers 是一个开源的库,它用于自然语言处理(NLP)任务,并利用各种预训练模型。即使没有直接访问 huggingface.co,仍有多种方法可以尝试使用 Transformers 库。
以下是在不科学上网(即在不使用任何特殊网络措施以规避网络限制的情况下)情况下尝试使用 Hugging Face Transformers 的一些建议:
1. PyPI 安装
   如果可以正常访问 Python Package Index (PyPI),可以直接使用 pip 安装 Transformers:

pip install transformers

这将安装最新版本的 Transformers 库以及其依赖。
2. 离线安装
   如果无法访问 PyPI,可以尝试从其他有互联网的地方下载 Transformers 库的 wheel 文件或源代码。然后,可以将其拷贝到您的机器上进行安装。对于 wheel 文件,使用命令:

   pip install /path/to/transformers.whl

   如果是源代码包,可以解压后在包根目录下运行:

   pip install .

3. 使用镜像站点
   某些国家和地区的开发者可能会因为网络限制而使用国内的镜像站点来安装Python包。例如,中国大陆的开发者可以使用清华大学的镜像站点:

   pip install transformers -i https://pypi.tuna.tsinghua.edu.cn/simple

4. 通过GitHub获取
   如果还可以访问 GitHub,可以克隆或下载 Transformers 库的仓库:

   git clone https://github.com/huggingface/transformers.git

下载后,可以按照离线安装的步骤在本地安装仓库代码。
请注意,某些功能可能需要下载额外的预训练模型。如果也不能直接下载这些模型,可能需要找到模型文件的离线版本或其他替代的下载方法。一旦拥有这些文件,可以在库中设置环境变量或代码内部变量,让库使用本地路径来加载模型。例如,可以使用以下环境变量:

export TRANSFORMERS_OFFLINE=1

或在 Python 代码中指定模型的本地路径:

from transformers import BertModelmodel = BertModel.from_pretrained("/path/to/local/model/directory")

请务必遵守相应的法律法规,合法地使用网络资源。

通义灵码

在没有科学上网的情况下,使用Hugging Face的Transformers库可能会遇到访问Hugging Face Model Hub或更新库时网络连接问题。但是,仍然有几种方法可以尝试:

  1. 离线安装库: 在能够访问互联网的环境中,可以先下载Transformers库的最新版本,然后在无网络的环境中安装。在有网的机器上运行以下命令:
pip download transformers

这会下载所有必要的文件。然后,将这些文件传输到无网环境,使用pip install命令进行安装:

pip install --no-index --find-links=path/to/downloaded/packages transformers

其中,path/to/downloaded/packages是下载的文件所在的目录。

  1. 本地镜像源: 如果在中国,可以使用国内的镜像源来加速下载。例如,阿里云提供了Pypi的镜像,可以在有网的时候配置:
   pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/pip install transformers

安装完成后,在无网络环境中,Transformers库已经可以使用,除非需要更新模型或者库本身。

  1. 提前下载模型: 如果只需要特定的预训练模型,可以在有网时使用transformers库的save_pretrained方法下载并保存到本地:
   from transformers import AutoModel, AutoTokenizermodel_name = "bert-base-chinese"tokenizer = AutoTokenizer.from_pretrained(model_name)model = AutoModel.from_pretrained(model_name)tokenizer.save_pretrained("path/to/save/tokenizer")model.save_pretrained("path/to/save/model")

然后在无网络环境中,可以使用from_pretrained加载本地的模型和tokenizer。

  1. 克隆Git仓库: Hugging Face的Transformers库是开源的,可以直接从GitHub克隆整个库到本地:
git clone https://github.com/huggingface/transformers.git

然后在项目中引用本地的库文件,而不是从PyPI安装。

请注意,即使在本地安装了库,如果需要下载新的模型或者更新库,仍然需要网络连接。如果模型已经下载并保存在本地,那么在无网络环境中使用已有的模型是可以的。

讯飞星火

要在不科学上网的情况下使用Hugging Face的Transformers库,可以通过设置环境变量或使用huggingface-cli命令行工具来实现。具体如下:

  • 设置环境变量:可以设置HF_ENDPOINT环境变量来指定Hugging Face Hub的镜像地址。例如,可以将其设置为https://hf-mirror.com,这是一个常用的Hugging Face Hub的国内镜像地址。
  • 使用huggingface-cli:可以通过安装huggingface-cli命令行工具来下载模型。安装完成后,可以使用huggingface-cli download命令下载模型,并指定--local-dir参数来设置模型的本地存储路径。同时,使用--resume-download参数可以在下载中断后继续下载,而--local-dir-use-symlinks参数用于指定是否使用符号链接。

此外,为了确保安装过程顺利,可以尝试通过清华大学的镜像源来安装所需的依赖包,这样可以加快下载速度并避免潜在的网络问题。

总之,通过上述方法,即使不科学上网,也可以在国内正常使用Hugging Face的Transformers库进行自然语言处理相关的研究和开发工作。

Kimi

如果无法访问互联网或希望在不使用科学上网(即翻墙)的情况下使用Hugging Face的Transformers库,可以通过以下几种方法来实现:

1. 离线模式

启用离线模式,以防止库尝试从Hugging Face的在线Hub下载任何模型或文件。可以通过设置环境变量TRANSFORMERS_OFFLINE=1来实现这一点。

export TRANSFORMERS_OFFLINE=1

2. 本地缓存

如果模型和分词器已经下载到本地,可以直接从本地缓存加载它们。确保有模型的所有文件,包括配置文件、权重文件等。

from transformers import AutoModel, AutoTokenizermodel_path = "./local/path/to/model"
tokenizer_path = "./local/path/to/tokenizer"tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
model = AutoModel.from_pretrained(model_path)

3. 提前下载模型

在有网络访问的时候,提前下载所需的模型和分词器,并保存到本地。

from transformers import AutoModel, AutoTokenizer# 请替换为您想下载的模型名
model_name = "bert-base-uncased"
tokenizer_name = model_nametokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
model = AutoModel.from_pretrained(model_name)# 保存到本地路径
save_path = "./local/path/to/save"
tokenizer.save_pretrained(save_path)
model.save_pretrained(save_path)

4. 使用代理或VPN

如果只是临时无法访问某些服务,可以考虑使用代理或VPN来解决网络问题。

5. 使用国内镜像

对于某些依赖,可以尝试使用国内的镜像源来加速下载,比如使用中国大陆的PyPI镜像来安装Python包。

6. 使用Docker

如果使用的是Docker,并且需要拉取Hugging Face的Transformers库的镜像,可能需要配置Docker以使用代理。

7. 手动下载

对于大型模型或数据集,如果Hugging Face Hub提供了直接下载链接,可以手动下载模型文件到本地,然后按照上述方法加载。

注意

  • 在使用离线模式时,将无法访问任何在线资源,包括模型权重、分词器、配置文件等。
  • 如果在没有网络的环境中工作,需要提前准备好所有必要的文件和依赖。
  • 确保遵守所有相关的使用条款和版权法规,不要违反Hugging Face或任何其他资源提供者的服务条款。

通过上述方法,即使在没有互联网连接的情况下,也可以使用Hugging Face的Transformers库。

这篇关于不科学上网使用Hugging Face的Transformers库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/951741

相关文章

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Spring LDAP目录服务的使用示例

《SpringLDAP目录服务的使用示例》本文主要介绍了SpringLDAP目录服务的使用示例... 目录引言一、Spring LDAP基础二、LdapTemplate详解三、LDAP对象映射四、基本LDAP操作4.1 查询操作4.2 添加操作4.3 修改操作4.4 删除操作五、认证与授权六、高级特性与最佳