imx6ull启动方式和镜像文件烧写

2024-05-01 09:44

本文主要是介绍imx6ull启动方式和镜像文件烧写,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、BOOT启动方式
    • 1.串行下载
    • 2.内部BOOT模式
  • 二、内部BOOT模式详细流程
    • 1.启动设备的选择
    • 2.镜像烧写
  • 总结


前言

💦 I.MX6Ull 支持多种启动方式以及启动设备,比如可以从 SD/EMMC、NAND Flash、QSPI Flash等启动。用户可以根据实际情况,选择合适的启动设备。不同的启动方式其启动方式和启动要求也不一样,比如从 SD 卡启动就需要在 bin 文件前面添加一个数据头,其它的启动设备也是需要这个数据头的。


一、BOOT启动方式

💦 BOOT 的处理过程是发生在 I.MX6U 芯片上电以后,芯片会根据 BOOT_MODE[1:0]的设置
来选择 BOOT 方式。
在这里插入图片描述

1.串行下载

💦 当 BOOT_MODE1 为 0,BOOT_MODE0 为 1 的时候此模式使能,串行下载的意思就是可以通过 USB 或者 UART 将代码下载到板子上的外置存储设备中比如SD/EMMC、NAND 等存储设备下载代码。用此方法需要NXP提供的专用软件。

2.内部BOOT模式

💦 当 BOOT_MODE1 为 1,BOOT_MODE0 为 0 的时候此模式使能,在此模式下,芯片会执行内部的 boot ROM 代码,这段 boot ROM 代码会进行硬件初始化(一部分外设),然后从 boot 设备(就是存放代码的设备、比如 SD/EMMC、NAND)中将代码拷贝出来复制到指定的 RAM 中,一般是 DDR中。

二、内部BOOT模式详细流程

1.启动设备的选择

💦 当 BOOT_MODE 设置为内部 BOOT 模式以后,可以从以下设备中启动:
①、接到 EIM 接口的 CS0 上的 16 位 NOR Flash。
②、接到 EIM 接口的 CS0 上的 OneNAND Flash。
③、接到 GPMI 接口上的 MLC/SLC NAND Flash,NAND Flash 页大小支持 2KByte、4KByte
和 8KByte,8 位宽。
④、Quad SPI Flash。
⑤、接到 USDHC 接口上的 SD/MMC/eSD/SDXC/eMMC 等设备。
⑥、SPI 接口的 EEPROM
启动设备有了,该如何选择呢,I.MX6U 提供了 eFUSE 和 GPIO 配置两种,eFUSE 不常用。我们看如何通过 GPIO 来选择启动设备。
BOOT_CFG1[7:0]、BOOT_CFG2[7:0]和 BOOT_CFG4[7:0]这 24 个配置 IO,这 24 个配置 IO 刚好对应着 LCD 的 24 根数据线 LCD_DATA0~LCDDATA23,当启动完成以后这 24 个 IO 就可以为 LCD 的数据线使用。这 24 根线和 BOOT_MODE1、BOOT_MODE0 共同组成了 I.MX6U的启动选择引脚。
在这里插入图片描述
💦 24 个配置 IO原理图如下,可以看出不是所有的IO都需要关注,大部分是接地的。
在这里插入图片描述
💦 BOOT_CFG4[7:0]这 8 个 IO 都 10K 电阻下拉接地,所以我们压根就不需要去关注 BOOT_CFG4[7:0]。我们需要重点关注的就只剩下了 BOOT_CFG2[7:0]和 BOOT_CFG1[7:0]这 16 个 IO,配置如下:
在这里插入图片描述
💦 BOOT_CFG1[7:0]和 BOOT_CFG2[7:0]这 16 个 IO 还能在减少,查看原理图
在这里插入图片描述
💦 对应引脚

在这里插入图片描述

拨码开关位置
在这里插入图片描述

2.镜像烧写

💦 设置好 BOOT 以后就能从指定的存储设备启动了,启动的前提是你的存储设备里面得有代码,
在裸机实验的时候,使用 imxdownload 这个软件将 led.bin 烧写到了 SD 卡中。imxdownload 会在 led.bin前面添加一些头信息,重新生成一个叫做 load.imx 的文件,最终实际烧写的是 load.imx。
💦 所以这个imxdownload 软件究竟做了什么?load.imx 和 led.bin 究竟是什么关系?
在回答文件前,先回顾下学习 STM32 的时候我们可以直接将编译生成的.bin 文件烧写到 STM32 内部 flash 里面,但是 I.MX6U 不能直接烧写编译生成的.bin 文件,我们需要在.bin 文件前面添加一些头信息构成满足 I.MX6U 需求的最终可烧写文件,I.MX6U 的最终可烧写文件组成如下:
①、Image vector table,简称 IVT,IVT 里面包含了一系列的地址信息,这些地址信息在
ROM 中按照固定的地址存放着。
②、Boot data,启动数据,包含了镜像要拷贝到哪个地址,拷贝的大小是多少等等。
③、Device configuration data,简称 DCD,设备配置信息,重点是 DDR3 的初始化配置。
④、用户代码可执行文件,比如 led.bin。

总结

💦 我们编译出来的.bin 文件不能直接烧写到 SD 卡中,需要在.bin 文件前面加上 IVT、Boot Data 和 DCD 这三个数据块。这三个数据块是有指定格式的,我们必须按照格式填写,然后将其放到.bin 文件前面,最终合成的才是可以直接烧写到 SD 卡中的文件。

这篇关于imx6ull启动方式和镜像文件烧写的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/951358

相关文章

如何突破底层思维方式的牢笼

我始终认为,牛人和普通人的根本区别在于思维方式的不同,而非知识多少、阅历多少。 在这个世界上总有一帮神一样的人物存在。就像读到的那句话:“人类就像是一条历史长河中的鱼,只有某几条鱼跳出河面,看到世界的法则,但是却无法改变,当那几条鱼中有跳上岸,进化了,改变河道流向,那样才能改变法则。”  最近一段时间一直在不断寻在内心的东西,同时也在不断的去反省和否定自己的一些思维模式,尝试重

idea lanyu方式激活

访问http://idea.lanyus.com/这个地址。根据提示将0.0.0.0 account.jetbrains.com添加到hosts文件中,hosts文件在C:\Windows\System32\drivers\etc目录下。点击获得注册码即可。

以canvas方式绘制粒子背景效果,感觉还可以

这个是看到项目中别人写好的,感觉这种写法效果还可以,就存留记录下 就是这种的背景效果。如果想改背景颜色可以通过canvas.js文件中的fillStyle值改。 附上demo下载地址。 https://download.csdn.net/download/u012138137/11249872

vue同页面多路由懒加载-及可能存在问题的解决方式

先上图,再解释 图一是多路由页面,图二是路由文件。从图一可以看出每个router-view对应的name都不一样。从图二可以看出层路由对应的组件加载方式要跟图一中的name相对应,并且图二的路由层在跟图一对应的页面中要加上components层,多一个s结尾,里面的的方法名就是图一路由的name值,里面还可以照样用懒加载的方式。 页面上其他的路由在路由文件中也跟图二是一样的写法。 附送可能存在

vue子路由回退后刷新页面方式

最近碰到一个小问题,页面中含有 <transition name="router-slid" mode="out-in"><router-view></router-view></transition> 作为子页面加载显示的地方。但是一般正常子路由通过 this.$router.go(-1) 返回到上一层原先的页面中。通过路由历史返回方式原本父页面想更新数据在created 跟mounted

Docker启动异常

报错信息: failed to start daemon: Error initializing network controller: error creating default "bridge" network: cannot create network b8fd8c684f0ba865d4a13d36e5282fd694bbd37b243c7ec6c9cd29416db98d4b (d

二叉树三种遍历方式及其实现

一、基本概念 每个结点最多有两棵子树,左子树和右子树,次序不可以颠倒。 性质: 1、非空二叉树的第n层上至多有2^(n-1)个元素。 2、深度为h的二叉树至多有2^h-1个结点。 3、对任何一棵二叉树T,如果其终端结点数(即叶子结点数)为n0,度为2的结点数为n2,则n0 = n2 + 1。 满二叉树:所有终端都在同一层次,且非终端结点的度数为2。 在满二叉树中若其深度为h,则其所包含

七种排序方式总结

/*2018.01.23*A:YUAN*T:其中排序算法:冒泡排序,简单排序,直接插入排序,希尔排序,堆排序,归并排序,快速排序*/#include <stdio.h>#include <math.h>#include <malloc.h>#define MAXSIZE 10000#define FALSE 0#define TRUE 1typedef struct {i

逆向学习汇编篇:内存管理与寻址方式

本节课在线学习视频(网盘地址,保存后即可免费观看): ​​https://pan.quark.cn/s/3ceeb9ae6d98​​ 在汇编语言的世界中,内存管理和寻址方式是构建程序的基础。理解这些概念不仅对于编写高效的汇编代码至关重要,也是进行逆向工程分析的关键技能。本文将深入探讨内存管理的基本原则和多种寻址方式,并通过代码案例来展示它们的实际应用。 1. 内存管理 内存管理涉及如何分配

IOS 数组去重的几种方式

本来只知道NSSet和KeyValues的。今天又新学了几种方式 还有就是和同事学的一种方式 外层循环从0开始遍历,内层从最后一个元素开始遍历 for(int i=0;i<index;i++){  for(int j=index-1;j>i;j-- ){ } }