自制Monkey语言编译器:解释执行return语句和错误处理控制

本文主要是介绍自制Monkey语言编译器:解释执行return语句和错误处理控制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在高级编程语言中,大多含有一个指令叫return,也就是程序的执行指令流遇到该语句后不再往下执行,而是返回上一层,如果return后面附带数据的话,程序会把数据夹带到调用栈上一层的代码执行路径。本节我们就给Monkey语言编译器增加解释执行return语句的功能,完成本节代码后,编译器能解释执行如下代码:

这里写图片描述

代码中存在两个if 间套,内层if执行return语句附带返回整数10,外层if 最后执行return语句附带放回数值1,根据代码逻辑,最后一条语句也就是return 1;不会被编译器所执行,编译器会把内层if里面的return语句执行后,把整形10返回给最外层,完成本节代码后,编译器对上面代码解释执行的结果如下:

这里写图片描述

从运行结果看,编译器解释执行了一系列if条件判断语句后,将内层if语句块包含的return语句执行了,并没有执行外层if语句块包含的return语句,所以在控制台输出上显示出编译器将数值10返回给最外层。接下来我们看看代码的实现。

我们现在代码中添加return 返回值对应的符号对象:


//change 1
class ReturnValues extends BaseObject {constructor(props) {super(props)this.valueObject = props.value}type () {return this.RETURN_VALUE_OBJECT}inspect() {this.msg = "return with : " + this.valueObject.inspect()return this.msg}
}

上面实现的符号对象,主要功能就是把return后面的数值或变量包裹在类ReturnValues中。接着我们在解释执行的主函数中添加对return语句的专门处理分支:

class MonkeyEvaluator {eval (node) {var props = {}switch (node.type) {...//change 2 case "ReturnStatement":var props = {}props.value = this.eval(node.expression)// change 12if (this.isError(props.value)) {return props.value}var obj =  new ReturnValues(props)console.log(obj.inspect())return obj...}...}

当语法解析器解析到return语句时,会构造一个类型为”RetturnStatement”的语法树节点,我们在解释执行函数中,如果发现该节点被传入,那么就进入对应执行分支。在return语句后面很可能是一个复杂的运算表达式,所以代码先递归调用eval解释执行return后面的语句以便获得要返回的数据对象,接着把该数据对象封装在前面设计的ReturnValues符号对象里。

在上一节,我们增加了一个函数evalStatements用来解释执行if语句块,其内容如下:

evalStatements(node) {var result = nullfor (var i = 0; i < node.statements.length; i++) {result = this.eval(node.statements[i])if (result.type() == result.RETURN_VALUE_OBJECT|| result.type() == result.ERROR_OBJ) { // change 3return result}}return result}

使用上面的函数去解释本文最开始给出的if间套语句会有问题,因为上面代码的执行方式是把if语句块里面的每条代码都解释执行一遍,然后把最后一条语句解释执行的结果返回给上一层,这样的话编译器在解释执行开头给出的代码时,它会解释执行最外层if语句块最后一条语句后才停止,于是使用上面代码解释执行if语句块就会造成错误,因为根据逻辑,语句“return 1;”是不应该被执行的。我们要修改代码处理这个问题,在MonkeyCompilerIDE.js中修改代码如下:

onLexingClick () {this.lexer = new MonkeyLexer(this.inputInstance.getContent())this.parser = new MonkeyCompilerParser(this.lexer)this.parser.parseProgram()this.program = this.parser.program/*for (var i = 0; i < this.program.statements.length; i++) {console.log(this.program.statements[i].getLiteral())this.evaluator.eval(this.program.statements[i])}*/// change 4this.evaluator.eval(this.program)}

我们把语法解析后形成的语法树根节点,也就是Program对象直接传入解释器的eval函数,在MonkeyCompilerParser.js中也做一些相应修改:

class Program {constructor () {this.statements = []// change 3this.type = "program"}getLiteral() {if (this.statements.length > 0) {return this.statements[0].tokenLiteral()} else {return ""}}
}

回到MonkeyEvaluator.js中,我们在eval函数中添加对应处理代码:

eval (node) {var props = {}switch (node.type) { //change 5case "program":return this.evalProgram(node)...}...
}
.... //change 5  // change 3 in MonkeyCompilerParser.js // change 4 in MonkeyCompilerIDE.jsevalProgram (program) {var result = nullfor (var i = 0; i < program.statements.length; i++) {result = this.eval(program.statements[i])if (result.type() == result.RETURN_VALUE_OBJECT) {return result.valueObject}if (result.type() == result.NULL_OBJ) {return result} // change 10if (result.type = result.ERROR_OBJ) {console.log(result.msg)return result}} return result}

evalProgram的逻辑跟evalStatement的逻辑其实是一样的,就是把语法树节当前点中的所有子节点进行解释执行,这么修改之后,我们就能处理前面说的if语句间套中包含return指令的问题,至于其中的详细原理,点击如下链接,查看视频讲解和代码调试演示:更详细的讲解和代码调试演示过程,请点击链接。

完成上面代码之后,编译器就能正确的解释执行return语句了,更详细的讲解和代码调试演示,请参看上头给出的视频链接。接下来我们要为编译器添加错误处理信息。所谓错误处理是指用户在编程时,使用了错误的数理逻辑,例如下面这样:

这里写图片描述

上述代码把一个整形和一个布尔型数据相加,这在逻辑上走不通,因此在编译器看来是一种逻辑错误,当出现这种错误是,编译器就得报错,并停止继续往下执行代码。接下来我们就为此添加错误处理功能,在MonkeyEvaluator.js中添加如下代码:

// change 6newError(msg) {var props = {}props.errMsg = msgreturn new Error(props)}

msg表示的是错误消息字符串,上面函数把它封装到一个名为Error的符号对象里,我们看看其定义实现:

class Error extends BaseObject {constructor(props) {super(props)this.msg = props.errMsg}type () {return this.ERROR_OBJ}inspect () {return this.msg}
}

错误符号对象原理很简单,它就是封装了一条错误信息字符串msg以便给编译器在合适的时候显示出来。接着我们在合适的地方检测类型匹配错误,首先是在解释执行中序表达式时,添加代码如下:

evalInfixExpression(operator, left, right) {//change 7if (left.type() != right.type()) {return  this.newError("type mismatch: " +left.type() + " and " + right.type())}...
//change 8return  this.newError("unknown operator: "+ operator)
}

前面例子中出错的语句”5+true”就是中序表达式,该函数在解释执行表达式前,先检测运算符两边的数据类型是否一致,如果不一致的话,调用newError函数构造一个Error对象后直接返回,不再继续往下执行。或者在中序表达式中,编译器遇到了识别不了的运算符,那么它也会构造一个错误对象返回。

如果代码在对两个整形数据进行运算时,使用了编译器无法识别的运算符,那么编译器也会构造一个错误对象返回:

evalIntegerInfixExpression(operator, left, right) {....switch (operator) {....default:// change 9return this.newError("unknown operator for Integer")}....
}

在取负操作时,如果减号后面跟着的不是整形,那么编译器也报错,例如”-true”,这种代码是错误的,因此修改如下:

evalMinusPrefixOperatorExpression(right) {if (right.type() !== right.INTEGER_OBJ) { // change 8return new this.newError("unknown operaotr:- ", right.type())}....
}

在evalProgram函数中,它会把所有子节点就像解释执行,但如果在执行中间遇到错误时,那么就必须终止执行流程,于是在该函数中也要进行相应修改:

evalProgram (program) {var result = nullfor (var i = 0; i < program.statements.length; i++) {...// change 10if (result.type = result.ERROR_OBJ) {console.log(result.msg)return result}
}

我们添加一个函数用于判断,eval函数在解释执行对应的语法树节点后,返回的是否是一个错误对象:

    // change 11isError(obj) {if (obj != null) {return obj.type() == obj.ERROR_OBJ}return false}

在不少地方,例如return后面的表达式,if括号里面的条件判断表达式,他们在解释执行时都可能产生错误,因此我们需要在相应的位置进行监控:

eval(node){....switch (node.type) {....case "PrefixExpression":...// change 13if (this.isError(right)) {return right}...case "InfixExpression":var left = this.eval(node.left)// change 14if (this.isError(left)) {return left}var right = this.eval(node.right)//change 15if (this.isError(right)) {return right}case "ReturnStatement":....// change 12if (this.isError(props.value)) {return props.value}....    
}

上面代码在处理return语句时,检测return后面跟着的表达式被编译器解释执行后是否出错,如果出错则把错误对象返回。在解释执行前置表达式时,编译器检测运算符后面的表达式在解释执行时是否正常,如果出错则直接将错误返回。

接下来则是在if语句的解释执行部分进行错误检测:

evalIfExpression(ifNode) {console.log("begin to eval if statment")var condition = this.eval(ifNode.condition)// change 16if (this.isError(condition)) {return condition}....
}

代码在执行if语句块前,先判断if括号里的条件表达式在解释执行时是否正常,如果有错就不再往下执行,完成上面代码后,编译器就基本建立了语法上的错误检测机制。

更详细的讲解和代码调试演示过程,请点击链接

更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:
这里写图片描述

这篇关于自制Monkey语言编译器:解释执行return语句和错误处理控制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950068

相关文章

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

Mysql常见的SQL语句格式及实用技巧

《Mysql常见的SQL语句格式及实用技巧》本文系统梳理MySQL常见SQL语句格式,涵盖数据库与表的创建、删除、修改、查询操作,以及记录增删改查和多表关联等高级查询,同时提供索引优化、事务处理、临时... 目录一、常用语法汇总二、示例1.数据库操作2.表操作3.记录操作 4.高级查询三、实用技巧一、常用语

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)