YOLOv8+bytetrack实现多目标追踪

2024-04-30 16:12

本文主要是介绍YOLOv8+bytetrack实现多目标追踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. bytetrack简介

ByteTrack是一种基于检测的目标追踪算法,它在YOLOv8检测器的基础上进行了改进,实现了更高效的目标追踪,具有简单、高效和通用的特点。相较于传统的多目标跟踪方法,ByteTrack不依赖于ReID模型,而是通过关联每个检测框来进行跟踪。这种方法可以有效地解决低分检测框被简单丢弃的问题,从而减少漏检和碎片化轨迹的情况。

ByteTrack算法流程如下:首先,使用目标检测器对当前帧进行检测,得到一系列候选目标框。然后,利用卡尔曼滤波对目标框进行预测,并利用匈牙利算法进行数据关联,将检测框与历史轨迹进行匹配。对于得分较高的目标框,直接与历史轨迹匹配;对于得分较低的目标框,则与第一次没有匹配上的轨迹进行匹配,用于检测目标遮挡的情形。

为了实现高效的实时多目标跟踪,ByteTrack还采用了一些优化策略。例如,对轨迹进行分类,避免在代码阅读时出现混淆的情形;同时,对于连续两帧都未匹配上的轨迹,将其标记为即将删除的轨迹,从而及时清理无效轨迹。

在实际应用中,ByteTrack能够轻松应用到各种多目标跟踪框架中,并取得显著的性能提升。在MOT17测试集上,ByteTrack实现了80.3 MOTA、77.3 IDF1和63.1 HOTA等优异性能指标,同时在单个V100 GPU上运行速度达到了30 FPS。这表明ByteTrack具有高效、准确和实时性强的特点,能够满足实际应用的需求。

2. 实现流程

使用了 YOLOv8 和 ByteTrack 进行目标识别与跟踪。实现流程:如下面代码所示

  1. 导入必要的库:

    • cv2:用于处理视频和图像。
    • os:用于处理文件路径。
    • ultralytics.YOLO:用于加载 YOLOv8 模型进行目标检测和跟踪。
  2. 加载 YOLOv8 模型:

    model = YOLO(r'track/pt/best.pt')
    

    这行代码加载了预训练的 YOLOv8 模型,该模型用于目标检测和跟踪。

  3. 设置输入视频文件夹路径和输出视频文件夹路径:

    input_video_folder = r"track/input"
    output_video_folder = r"track/output"
    

    这里定义了输入视频文件夹路径和输出视频文件夹路径。

  4. 获取视频文件列表并按文件名排序:

    video_files = [file for file in os.listdir(input_video_folder) if file.endswith(".mp4")]
    video_files.sort()
    

    这行代码获取指定文件夹中所有以 .mp4 结尾的视频文件,并按文件名排序。

  5. 循环处理每个视频文件:

    for video_file in video_files:
    

    这是一个循环,遍历所有视频文件。

  6. 打开视频文件并设置输出视频路径:

    input_video_path = os.path.join(input_video_folder, video_file)
    output_video_path = os.path.join(output_video_folder, video_file)
    

    这里根据当前视频文件构建输入视频文件路径和输出视频文件路径。

  7. 获取视频的帧率和尺寸:

    fps = cap.get(cv2.CAP_PROP_FPS)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    

    这行代码获取视频的帧率和尺寸。

  8. 创建视频写入对象:

    out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
    

    这行代码创建了一个视频写入对象,用于写入处理后的视频帧。

  9. 循环处理视频的每一帧:

    while cap.isOpened():
    

    这是一个循环,用于处理视频的每一帧。

  10. 读取视频的下一帧:

    success, frame = cap.read()
    

    这行代码读取视频的下一帧,并将帧存储在变量 frame 中。

  11. 使用 YOLOv8 模型进行目标检测和跟踪:

    results = model.track(frame, tracker="ultralytics/cfg/trackers/bytetrack.yaml", persist=True)
    

    这行代码使用 YOLOv8 模型对当前帧进行目标检测和跟踪,使用 ByteTrack 跟踪器,并设置 persist=True 以保持跟踪。

  12. 将检测和跟踪结果可视化并写入输出视频:

    annotated_frame = results[0].plot()
    out.write(annotated_frame)
    

    这行代码将检测和跟踪结果可视化在当前帧上,并将结果写入输出视频。

  13. 显示处理后的视频帧:

    cv2.imshow("YOLOv8 Tracking", annotated_frame)
    

    这行代码显示处理后的视频帧。

  14. 检测是否按下 ‘q’ 键:

    if cv2.waitKey(1) & 0xFF == ord("q"):break
    

    如果用户按下键盘上的 ‘q’ 键,则跳出循环。

  15. 释放视频捕获对象和视频写入对象:

    cap.release()
    out.release()
    

    这行代码释放视频捕获对象和视频写入对象,释放视频资源。

  16. 关闭显示窗口:

    cv2.destroyAllWindows()
    

    这行代码关闭 OpenCV 显示的所有窗口。

  17. 显示处理完成信息:

    print("所有视频处理完成!")
    

    这行代码打印输出所有视频处理完成的消息。

3. 总体代码:

import cv2
from ultralytics import YOLO
import os# Load the YOLOv8 model
model = YOLO(r'track/pt/best.pt')# 输入视频文件夹路径和输出视频文件夹路径
input_video_folder = r"track/input"
output_video_folder = r"track/output"# 获取视频文件夹中的所有视频文件名,并按文件名排序
video_files = [file for file in os.listdir(input_video_folder) if file.endswith(".mp4")]
video_files.sort()# 循环处理每个视频文件
for video_file in video_files:# 打开视频文件input_video_path = os.path.join(input_video_folder, video_file)cap = cv2.VideoCapture(input_video_path)# 获取输出视频文件名output_video_path = os.path.join(output_video_folder, video_file)# 获取视频的帧率和尺寸fps = cap.get(cv2.CAP_PROP_FPS)width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 创建视频写入对象fourcc = cv2.VideoWriter_fourcc(*'mp4v')out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))# Loop through the video frameswhile cap.isOpened():# Read a frame from the videosuccess, frame = cap.read()if success:# Run YOLOv8 tracking on the frame, persisting tracks between framesresults = model.track(frame, tracker="ultralytics/cfg/trackers/bytetrack.yaml", persist=True)# Visualize the results on the frameannotated_frame = results[0].plot()# Write the annotated frame to the output videoout.write(annotated_frame)# Display the annotated framecv2.imshow("YOLOv8 Tracking", annotated_frame)# Break the loop if 'q' is pressedif cv2.waitKey(1) & 0xFF == ord("q"):breakelse:# Break the loop if the end of the video is reachedbreak# Release the video capture and video write objectscap.release()out.release()# Close the display window
cv2.destroyAllWindows()print("所有视频处理完成!")

这篇关于YOLOv8+bytetrack实现多目标追踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949324

相关文章

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug