120011111111QEMU中启动单虚拟机并已TAP/TUN方式联网的方法请参见:QEMU中启动单虚拟机并已TAP/TUN方式联网的方法请参见:QEMU中启动单虚拟机并已TAP/TUN方式联网的方

本文主要是介绍120011111111QEMU中启动单虚拟机并已TAP/TUN方式联网的方法请参见:QEMU中启动单虚拟机并已TAP/TUN方式联网的方法请参见:QEMU中启动单虚拟机并已TAP/TUN方式联网的方,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用Qemu模拟ARM(1)

前面已经安装并配置了编译链和qemu,现在可以用qemu来模拟arm平台了。

1. Hello, Qemu!

输入下面的代码:

hello.c - hello.c

#include<stdio.h>
int main()
{
    printf("Hello, Qemu!\n");
    return 0;
}

编译并运行:

$ arm-none-linux-gnueabi-gcc -o hello hello.c -static
$ qemu-arm ./hello
$ file hello
hello: ELF 32-bit LSB  executable, ARM, EABI5 version 1 (SYSV), \statically linked, for GNU/Linux 2.6.16, not stripped

不加-static变量的话,运行时则需要使用-L选项链接到相应的运行库

$ qemu-arm -L /home/dash/CodeSourcery/\
Sourcery_CodeBench_Lite_for_ARM_GNU_Linux/\
arm-none-linux-gnueabi/libc/  ./hello_1 
Hello, Qemu!
$ file hello_1
hello_1: ELF 32-bit LSB  executable, ARM, EABI5 version 1 (SYSV),\dynamically linked (uses shared libs), for GNU/Linux 2.6.16, not stripped

动态编译和静态编译生成的文件大小差别:

$ ls -l -h
total 656K
-rwxr-xr-x 1 dash root 640K Jul  7 18:46 hello
-rwxr-xr-x 1 dash root 6.6K Jul  7 18:48 hello_1

小插曲1:

系统里安装了两套编译链arm-none-eabi-和arm-none-linux-eabi-,很容易让人混淆,可参考编译链的命名规则:

arch(架构)-vendor(厂商名)–(os(操作系统名)–)abi(Application Binary Interface,应用程序二进制接口)

举例说明:

  • x86_64-w64-mingw32 = x86_64 “arch”字段 (=AMD64), w64 (=mingw-w64 是”vendor”字段), mingw32 (=GCC所见的win32 API)
  • i686-unknown-linux-gnu = 32位 GNU/linux编译链
  • arm-none-linux-gnueabi = ARM 架构, 无vendor字段, linux 系统, gnueabi ABI.
  • arm-none-eabi = ARM架构, 无厂商, eabi ABI(embedded abi)

两种编译链的主要区别在于库的差别,前者没有后者的库多,后者主要用于在有操作系统的时候编译APP用的。前者不包括标准输入输出库在内的很多C标准库,适合于做面向硬件的类似单片机那样的开发。因而如果采用arm-none-eabi-gcc来编译hello.c会出现链接错误。

小插曲2:

qemu-arm和qemu-system-arm的区别:

  • qemu-arm是用户模式的模拟器(更精确的表述应该是系统调用模拟器),而qemu-system-arm则是系统模拟器,它可以模拟出整个机器并运行操作系统
  • qemu-arm仅可用来运行二进制文件,因此你可以交叉编译完例如hello world之类的程序然后交给qemu-arm来运行,简单而高效。而qemu-system-arm则需要你把hello world程序下载到客户机操作系统能访问到的硬盘里才能运行。

2. 使用qemu-system-arm运行Linux内核

从www.kernel.org下载最新内核,而后解压

$ tar xJf linux-3.10.tar.xz
$ cd linux-3.10
$ make ARCH=arm versatile_defconfig
$ make menuconfig ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-

上面的命令指定内核架构为arm,交叉编译链为arm-none-linux-gnueabi, 需要在make menuconfig弹出的窗口中选择到 “Kernel Features”, 激活“Use the ARM EABI to compile the kernel”, 如果不激活这个选项的话,内核将无法加载接下来要制作的initramfs。

如果需要在u-boot上加载内核,就要编译为uImage的格式,uImage通过mkimage程序来压缩的,ArchLinux的yaourt仓库里可以找到这个包:

$ yaourt -S mkimage

安装好mkimage后,开始编译内核,因为CPU有4核,所以开启了-j8选项以加速编译:

$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- all -j8 uImage 

接下来我们可以在qemu-system-arm中测试我们的内核了

$ qemu-system-arm -M versatilepb -m 128M -kernel ./arch/arm/boot/uImage

在弹出的窗口中可以内核运行到了kernel panic状态,这是因为内核无法加载root镜像的缘故,我们将制作一个最简单的hello world的文件系统,告知kernel运行之。

init.c - init.c

#include <stdio.h>

void main() {
    printf("Hello World!\n");
    while(1);
}

编译并制作启动镜像:

$ arm-none-linux-gnueabi-gcc -o init init.c -static
$ echo init |cpio -o --format=newc > initramfs
1280 blocks
$ file initramfs 
initramfs: ASCII cpio archive (SVR4 with no CRC)

接下来我们回到编译目录下执行:

$ qemu-system-arm -M versatilepb -kernel ./arch/arm/boot/uImage  -initrd
../initramfs -serial stdio -append "console=tty1"

这时候可以看到,kernel运行并在Qemu自带的终端里打印出”Hello World!“。

如果我们改变console变量为ttyAMA0, 将在启动qemu-system-arm的本终端上打印出qemu的输出。


 

 

 

用Qemu模拟ARM(2)

1. 关于Bootloader:

(引导程序)位于电脑或其他计算机应用上,是指引导操作系统启动的程序。引导程序启动方式和程序视应用机型种类而不同。例如在普通的个人电脑上,引导程序通常分为两部分:第一阶段引导程序位于主引导记录(MBR),用以引导位于某个分区上的第二阶段引导程序,如NTLDR、GNU GRUB等。

嵌入式系统中常见的Bootloader主要有以下几种:

  • Das U-Boot 是一个主要用于嵌入式系统的开机载入程序,可以支持多种不同的计算机系统结构,包括PPC、ARM、AVR32、MIPS、x86、68k、Nios与MicroBlaze。
  • vivi是由mizi公司设计为ARM处理器系列设计的一个bootloader.
  • Redboot (Red Hat Embedded Debug and Bootstrap)是Red Hat公司开发的一个独立运行在嵌入式系统上的BootLoader程序,是目前比较流行的一个功能、可移植性好的BootLoader。

2. 关于“裸机编程(Bare-Metal)”:

微控制器开发人员很熟悉这个概念, Bare-Metal是指的你的程序和处理器之间没有任何东西——你写的程序将直接运行在处理器上, 换言之,开发人员是在直接操控硬件。在裸机编程的场景中,需要由开发人员检查并排除任何一个可以导致系统崩溃的风险。

“Bare-Metal”要求开发人员了解关于硬件的细节,所以接下来我们将对编译链和qemu本身进行分析。

3. 下载qemu源码包并查询相关硬件信息:

ArchLinux采用ABS(Arch Build System)来管理源码包,下面的步骤将qemu源码包下载到本地,更详细的关于ABS的操作可以在ArchLinux的Wiki中找到

$ pacman -S abs
$ pacman -Ss qemu
extra/qemu 1.4.2-2 [installed]
$ abs extra/qemu 
$ cp -r /var/abs/extra/qemu/ ~/abs 
$ cd ~/abs && makepkg -s --asroot -o

得到versatilepb开发板的CPU型号, 可以看到”arm926”是我们要的结果。

$ grep "arm" src/qemu-1.4.2/hw/versatilepb.c 
#include "arm-misc.h"
static struct arm_boot_info versatile_binfo;args->cpu_model = "arm926";cpu = cpu_arm_init(args->cpu_model);cpu_pic = arm_pic_init_cpu(cpu);arm_load_kernel(cpu, &versatile_binfo);

得到versatilepb开发板的串口寄存器硬件信息:

$ grep "UART*" src/qemu-1.4.2/hw/versatilepb.c /*  0x10009000 UART3.  *//*  0x101f1000 UART0.  *//*  0x101f2000 UART1.  *//*  0x101f3000 UART2.  */

所以说开源是王道嘛,很快就查到了每一个需要了解的细节。UART0在内存中map到的地址是0x101f1000, 我们直接往这个地址写数据,就可以在终端上看到数据输出了。

4. 查看编译链支持的平台:

$ cat ~/CodeSourcery/Sourcery_CodeBench_Lite_for_ARM_EABI/share/doc/arm-arm-none-eabi/info/gcc.info | grep arm926`arm926ej-s', `arm940t', `arm9tdmi', `arm10tdmi', `arm1020t',

arm926ej-s是被支持的,因此我们可以用这套编译链来生成需要的裸机调试代码。

5. 启动应用程序init.c的编写:

首先创建应用程序init.c:

init.c - init.c
volatile unsigned char * const UART0_PTR = (unsigned char *)0x0101f1000;
void display(const char *string){
    while(*string != '\0'){
        *UART0_PTR = *string;
        string++;
    }
}

int my_init(){
    display("Hello Open World\n");
}

init.c中,我们首先声明一个volatile变UART0_PTR,volatile关键字用于告知编译器此变量是用于直接访问内存映像设备的,即串口0内存地址

display()函数则是用于将字符串中的字符按顺序输出到串口0, 直到遇到字符串结尾。

my_init()调用了display(), 接下来我们将把它作为C入口函数.

预编译init.c:

$ arm-none-eabi-gcc -c -mcpu=arm926ej-s init.c -o init.o

6. 启动代码start.s编写:

start.s - start.s
.global _Start
_Start:
LDR sp, = sp_top
BL my_init
B .

处理器加电后,将跳转到指定的内存地址,从此地址开始读入并执行代码。

_Start被声明为全局函数,_Start的实现中,首先将栈地址指向sp_top, LDR(load), sp是栈地址寄存器(stack pointer),

BL则是跳转指令,跳转到my_init函数,事实上你可以跳转到任何一个你想跳转的函数,临时写一个their_init()跳转过去也行。Debug时常更改这里以调试不同的子系统功能。

“B.”可以理解为汇编里的while(1)或for(;;)循环,处理器空转,什么也不做。如果不调用它,系统就会崩溃。所谓嵌入式编程的一个基本理念就是,代码无限循环。

预编译汇编文件start.s:

$ arm-none-eabi-as -mcpu=arm926ej-s startup.s -o startup.o

7. 接下来我们需要用一个可以被编译器识别的链接脚本链接两文件, linker.ld:

ENTRY(_Start)
  SECTIONS
  {
  . = 0x10000;
  startup : { startup.o(.text)}
  .data : {*(.data)}
  .bss : {*(.bss)}
  . = . + 0x500;
  sp_top = .;
  }

ENTRY(_Start)用于告知链接器程序的入口点(entry point)是_Start(start.s中定义). Qemu模拟器如果加上-kernel选项时,将自动从0x10000开始执行,所以我们必须将代码放到这个地址。所以第四行我们指定”. = 0x10000”. SECTIONS就是用于定义程序的不同部分的。

startup.o组成了代码的text部分,然后是data部分和bss部分,最后一步则定义了栈指针(sp, stack pointer)地址. 栈通常是向下增长的,所以最好给它一个比较安全的地址, . = .+0x500就是用于避免栈被改写的。sp_top用于存储栈顶地址。

有关程序结构:

  • BSS段: 在采用段式内存管理的架构中,BSS段(bss segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域。BSS是英文Block Started by Symbol的简称。BSS段属于静态内存分配。.bss section的空间结构类似于stack, 主要用于存储静态变量、未显式初始化、在变量使用前由运行时初始化为零。
  • 数据段(data segment): 通常是指用来存放程序中已初始化且不为0的全局变量的一块内存区域。数据段属于静态内存分配。
  • 代码段(code segment/text segment): 通常是指用来存放程序执行代码的一块内存区域。这部分区域的大小在程序运行前就已经确定,并且内存区域通常属于只读,某些架构也允许代码段为可写,即允许程序自修改。在代码段中,也有可能包含一些只读的常数变量,例如字符串常量等。

编译:

$ arm-none-eabi-ld -T linker.ld init.o startup.o -o output.elf
$ file output.elf 
output.elf: ELF 32-bit LSB  executable, ARM, EABI5 version 1 (SYSV),statically linked, not stripped
$  arm-none-eabi-objcopy -O binary output.elf output.bin
$ file output.bin 
output.bin: data

8. 使用qemu-system-arm运行output.bin:

$ qemu-system-arm --help | grep nographic 
-nographic      disable graphical output and redirect serial I/Os to console.
$ qemu-system-arm -M versatilepb -nographic -kernel output.bin
Hello Open World

9. Play more tricks: 改动init.c里的串口输出地址为串口1:

volatile unsigned char * const UART0_PTR = (unsigned char *)0x0101f2000;// 0x101f1000  --> 0x101f2000

按照步骤3~7里重新编译,并运行以查看结果:

# 没有反应!
$ qemu-system-arm -M versatilepb -nographic -kernel output.bin
# 终端有输出字符。
$ qemu-system-arm -M versatilepb -kernel output.bin -serial vc:800x600 -serial stdio
Hello Open World

同样你也可以把字符输出到第三个串口,只不过前两个-serial的重定向需要指定到别的设备而已。

 

用Qemu模拟ARM(3)

 

1. 下载并交叉编译u-boot。

新版本的u-boot我加载后总有问题,2009.11版则可以顺利通过编译和测试。

$ wget ftp://ftp.denx.de/pub/u-boot/u-boot-2009.11.tar.bz2
$ tar xjvf u-boot-2009.11.tar.bz2 
$ cd u-boot-2009.11
$ make versatilepb_config arch=ARM CROSS_COMPILE=arm-none-eabi-
$ make all arch=ARM CROSS_COMPILE=arm-none-eabi- 

编译完成后会在目录下生成u-boot.bin和u-boot文件。

2. 运行u-boot.bin:

$ qemu-system-arm -M versatilepb -kernel u-boot.bin -nographic

如果采用-nographic来运行qemu-system-arm,终端将无法再响应任何系统输入譬如Ctrl+c/ctrl+d_,要终止qemu-system-arm就只能查到进程号再kill。所以我一般不带-nographic选项,启动后ctrl+alt+2去看serial0输出,保留在终端窗口直接ctrl+c杀死qemu-sytem-arm进程的权力。

3. 用u-boot引导镜像文件:

改动上一篇文章里用于构建启动镜像的linker.ld文件,因为u-boot.bin文件大小的缘故,我们需要把启动镜像的起始地址整体上移.

$ ls -l -h u-boot.bin 
-rwxr-xr-x 1 dash root 85K Jul  8 15:57 u-boot.bin

linker.ld文件里, 0x100000,这个大小相比于85K显然已经足够。

ENTRY(_Start)
SECTIONS
{
. = 0x100000;
startup : { startup.o(.text)}
.data : {*(.data)}
.bss : {*(.bss)}
. = . + 0x500;
sp_top = .;
}

按上一章的编译方法生成output.bin,不再重述。

使用mkimage工具创建u-boot可识别的image文件:

$ mkimage -A arm -C none -O linux -T kernel -d output.bin -a 0x00100000 -e 0x00100000 output.uimg
Image Name:   
Created:      Mon Jul  8 16:04:11 2013
Image Type:   ARM Linux Kernel Image (uncompressed)
Data Size:    152 Bytes = 0.15 kB = 0.00 MB
Load Address: 00100000
Entry Point:  00100000$ file *.uimg
output.uimg: u-boot legacy uImage, , Linux/ARM, OS Kernel Image (Not \
compressed), 152 bytes, Mon Jul  8 16:04:11 2013, Load Address: 0x00100000,\
Entry Point: 0x00100000, Header CRC: 0x3C62F575, Data CRC: 0x69CE9647

将u-boot.bin和output.uimg打包为一个文件:

$ cat u-boot.bin output.uimg >flash.bin

下面这条命令用于计算output.img在使用u-boot加载完flash.bin后在内存中的地址,-kernel选项告诉qemu从0x100000开始加载镜像,即65536。 65536+u-boot.bin后的大小,即output.img在内存中的地址。printf则是用16进制的格式打印出来,以便加载.

$ printf "0x%X" $(expr $(stat -c%s u-boot.bin) + 65536)
0x2525C

启动qemu-system-arm并运行自定义镜像:

$ qemu-system-arm -M versatilepb -nographic -kernel flash.bin
# iminfo 0x2525c## Checking Image at 0002525c ...Legacy image foundImage Name:   Image Type:   ARM Linux Kernel Image (uncompressed)Data Size:    152 Bytes =  0.1 kBLoad Address: 00100000Entry Point:  00100000Verifying Checksum ... OKVersatilePB # bootm 0x2525c
## Booting kernel from Legacy Image at 0002525c ...Image Name:   Image Type:   ARM Linux Kernel Image (uncompressed)Data Size:    152 Bytes =  0.1 kBLoad Address: 00100000Entry Point:  00100000Loading Kernel Image ... OK
OKStarting kernel ...Hello Open World

u-boot可以支持的选项还有很多,包括使用NFS/TFTP启动等等,留待以后慢慢研究。


 

这篇关于120011111111QEMU中启动单虚拟机并已TAP/TUN方式联网的方法请参见:QEMU中启动单虚拟机并已TAP/TUN方式联网的方法请参见:QEMU中启动单虚拟机并已TAP/TUN方式联网的方的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949055

相关文章

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

springboot3打包成war包,用tomcat8启动

1、在pom中,将打包类型改为war <packaging>war</packaging> 2、pom中排除SpringBoot内置的Tomcat容器并添加Tomcat依赖,用于编译和测试,         *依赖时一定设置 scope 为 provided (相当于 tomcat 依赖只在本地运行和测试的时候有效,         打包的时候会排除这个依赖)<scope>provided

内核启动时减少log的方式

内核引导选项 内核引导选项大体上可以分为两类:一类与设备无关、另一类与设备有关。与设备有关的引导选项多如牛毛,需要你自己阅读内核中的相应驱动程序源码以获取其能够接受的引导选项。比如,如果你想知道可以向 AHA1542 SCSI 驱动程序传递哪些引导选项,那么就查看 drivers/scsi/aha1542.c 文件,一般在前面 100 行注释里就可以找到所接受的引导选项说明。大多数选项是通过"_

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

用命令行的方式启动.netcore webapi

用命令行的方式启动.netcore web项目 进入指定的项目文件夹,比如我发布后的代码放在下面文件夹中 在此地址栏中输入“cmd”,打开命令提示符,进入到发布代码目录 命令行启动.netcore项目的命令为:  dotnet 项目启动文件.dll --urls="http://*:对外端口" --ip="本机ip" --port=项目内部端口 例: dotnet Imagine.M

Linux服务器Java启动脚本

Linux服务器Java启动脚本 1、初版2、优化版本3、常用脚本仓库 本文章介绍了如何在Linux服务器上执行Java并启动jar包, 通常我们会使用nohup直接启动,但是还是需要手动停止然后再次启动, 那如何更优雅的在服务器上启动jar包呢,让我们一起探讨一下吧。 1、初版 第一个版本是常用的做法,直接使用nohup后台启动jar包, 并将日志输出到当前文件夹n