函数定义域和值域

2024-04-30 01:52
文章标签 函数 值域 定义域

本文主要是介绍函数定义域和值域,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

定义域和值域

1. 函数的定义

函数的定义:一般的,在一个变化过程中,假设有两个变量 x x x y y y,如果对于任意一个 x x x 都有唯一确定的一个 y y y 和它对应,那么就称 x x x 是自变量, y y y x x x 的函数。 x x x 的取值范围叫做这个函数的定义域,相应 y y y 的取值范围叫做函数的值域。

y = f ( x ) y=f(x) y=f(x)

2. 定义域

定义域(domain of definition)指自变量 x x x 的取值范围,是函数三要素(定义域、值域、对应法则)之一,对应法则的作用对象。求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。

定义一:设 x x x y y y 是两个变量,变量 x x x 的变化范围为 D D D,如果对于每一个数 x ∈ D x \in D xD,变量 y y y 遵照一定的法则总有确定的数值与之对应,则称 y y y x x x 的函数,记作 y = f ( x ) y=f(x) y=f(x) x ∈ D x \in D xD x x x 称为自变量, y y y 称为因变量,数集 D D D 称为这个函数的定义域

3. 值域

值域,数学名词,在函数经典定义中,函数值因自变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如: f ( x ) = x f(x)=x f(x)=x,那么 f ( x ) f(x) f(x) 的取值范围就是函数 f ( x ) f(x) f(x) 的值域。

4. 垂线检验

函数的图像只有一点比较特殊:它必须满足垂线检验,只要满足垂线检验那么图像可以散落四处:这里有一部分,那里有一部分,或有一条垂直渐近线, 或者随心所欲地在各处散落任意个不连续的点。换而言之就是一个函数的图像可以由多个部分组成的,所以对于函数是否满足条件的要求是不多的 。

那么什么是垂线检验?

函数的图像是所有坐标为 ( x , f ( x ) ) (x,f(x)) (x,f(x)) 的点的集合。我们以某个实数开始,如果 x x x 在定义域中,则在坐标中画出点 ( x , f ( x ) ) (x,f(x)) (x,f(x)),这个点在 x x x 轴的点 x x x 的垂直线上,距离 x x x 轴高度为 f ( x ) f(x) f(x)。如果 x x x 没有在定义域中,则坐标中不存在该点。现在,对于每一个实数 x x x,我们重复这一个过程,从而构造出函数的图像。
垂线检验的作用?垂直检验用于判断画出的图形是否是函数的图像。它的思想是:不可能有两个点有相同的 x x x 坐标。换句话说,在图像上没有两个点会落在相对于 x x x 轴的同一条垂线上。要不然,我们如何知道在点 x x x 上的两个或多个坐标点中,哪一个坐标点的高度( y y y 值)对应了 f ( x ) f(x) f(x) 的值呢。

5. 奇偶性

奇偶性是函数的基本性质之一,下面理解以下奇偶性的定义,还会举几个例子。

(1) 一般地,如果对于函数 f ( x ) f(x) f(x) 的定义域内任意一个 x x x,都有 f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x),那么函数 f ( x ) f(x) f(x) 就叫偶函数。

(2) 一般地,如果对于函数 f ( x ) f(x) f(x) 的定义域内任意一个 x x x,都有 f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x),那么函数 f ( x ) f(x) f(x) 就叫奇函数。

(3) 偶函数的图像以函数坐标系的 y y y 轴对称,基函数的图像以函数坐标系的原点( O O O)对称,如下图 1-10 为偶函数,1-11 为奇函数。

请添加图片描述

函数 y = x 2 y=x^2 y=x2 无论 x x x 的值为正还是为负由于平方的关系最终 y y y 的值都是相同的,所以 y = x 2 y=x^2 y=x2 就是偶函数(根据定义 f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x))。函数 y = x 3 y=x^3 y=x3 x x x 的值为正时最终 y y y 值也为正,当 x x x 的值为负时最终 y y y 为负,不过值得大小是相同的,只是符号不同所以 y = x 3 y=x^3 y=x3 就是奇函数(根据定义 f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x),意思是说将负值代入函数得到的结果和正值代入函数得到的结果直接加上负号后得到的结果是相同的)。

请添加图片描述

从上图也可以看出 y = x 2 y=x^2 y=x2 图像以 y y y 轴对称, y = x 3 y=x^3 y=x3 的图像以原点对称。

反函数

如果一个函数与另一个函数相反,那么这个函数是另一个函数的反函数,这两个函数在图像上是相反的,简单地说, y = f ( x ) y=f(x) y=f(x) y y y 关于自变量 x x x 的函数,如果存在一个函数 g g g,使得 g ( y ) = g ( f ( x ) ) = x g(y)=g(f(x))=x g(y)=g(f(x))=x 那么 x = g ( y ) x=g(y) x=g(y) 就是 y = f ( x ) y=f(x) y=f(x) 的反函数,记作 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)

请添加图片描述

当我们需要求一个函数的反函数,我们只需要将自变量和因变量置换,然后求出相应的函数即可。

这篇关于函数定义域和值域的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/947642

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注