LIME技术个人总结和理解

2024-04-29 20:58
文章标签 技术 总结 理解 个人 lime

本文主要是介绍LIME技术个人总结和理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

方法:

干涉输入,然后观察预测结果会怎样变化。

实验表明这种做法在可解释性上是有用的。

因为我们可以通过改变人类可以理解的组件(比如单词或图像的一部分)来改变输入,即使模型使用的是更加复杂的组件(比如词向量)作为输入的特征。

LIME 背后的关键直觉就是,通过一个简单的模型来局部地(在我们想要解释的预测的附近)逼近一个黑箱模型会比全局性地去逼近这个模型要容易得多。

怎么实现?(通过给改变后的输入图像设定权重的方式来实现, 权重的值是改变后的图形和我们想要解释的实例的相似度的值。)

图 3 所示的例子说明了LIME在图像分类上是如何工作的。假设我们想解释一个可以预测图片中是否包含树蛙的分类器,我们可以借助右边被分解成可解读的组件(连续超像素)的图像。

640?wx_fmt=jpeg

 

超像素---番外篇解释:

超像素:有一系列 位置相邻的 比如颜色, 纹理,亮度等特征相近的 连续小区域。

如图 4 所示,我们通过“隐藏”一些可解读组件生成一个修改过的实例的数据集(在这个例子中是将隐藏的组件都设置成灰色)。对于每一个被修改过的实例,模型都会以一定概率判断图像实例是否包含树蛙。然后我们就在这个局部加权的数据集上得到了一个简单的(线性)回归模型,而我们更关心在更接近原始图像的修改过的实例上出现的错误。最后,我们给出带有最高正权重的超像素作为解释,将其它部分都改成灰色。
 

640?wx_fmt=jpeg

图4:用LIME解释一个预测。图片来源:Marco Tulio Ribeiro和Pixabay

第二个例子是解释谷歌的Inception神经网络模型对图像做的分类。如图 6所示,分类器预测这个图像是“树蛙”类的概率最高,而“台球”和“气球”的概率低一些。我们的解释揭示该分类器主要专注于蛙的面部作为此预测分类的依据。它也说明了为什么“台球桌”有非零概率,因为青蛙的爪子和眼与台球非常地相似,特别是在绿色背景下。同样,红色的心脏也和红气球类似。 
 
图6:解释Inception神经网络模型生成的预测。头三名预测结果是“树蛙”、“台球桌”和“气球”。图片来源:Marco Tulio Ribeiro和Pixabay提供的树蛙、台球和热气球图片。 
我们论文所述的实验表明机器学习专家和普通人都能从类似于图5和图6 这样的解释中获益。能够选择哪个模型泛化的更好,能够通过改变模型对模型进行改进,以及获得模型行为的关键洞察。

640?wx_fmt=jpeg

 

原作者论文:https://arxiv.org/pdf/1602.04938.pdf

 

 

这篇关于LIME技术个人总结和理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/947140

相关文章

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Java向kettle8.0传递参数的方式总结

《Java向kettle8.0传递参数的方式总结》介绍了如何在Kettle中传递参数到转换和作业中,包括设置全局properties、使用TransMeta和JobMeta的parameterValu... 目录1.传递参数到转换中2.传递参数到作业中总结1.传递参数到转换中1.1. 通过设置Trans的

C# Task Cancellation使用总结

《C#TaskCancellation使用总结》本文主要介绍了在使用CancellationTokenSource取消任务时的行为,以及如何使用Task的ContinueWith方法来处理任务的延... 目录C# Task Cancellation总结1、调用cancellationTokenSource.

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。