Brackets sequence UVA - 1626 (典型的区间dp+递归打印路径)

2024-04-29 13:32

本文主要是介绍Brackets sequence UVA - 1626 (典型的区间dp+递归打印路径),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击链接哦:https://vjudge.net/problem/51187/origin

题目大意:括弧的序列,在一个字符串中只包含" ( " " ) "和“ [ ” “ ] ”,要求空序列为正确的括弧,如果s是正确的序列,那么[s]和(s)也是正确的序列,如果a和b是是正确的序列,那么ab也是正确的序列。

求在给出的字符串基础上要至少添加多少括号才能使得字符序列是正确的。

ps:紫书p278

一开始自己先是用模拟去做的,自己感觉应该能可以模拟出来,而且长度为100也不会超时。但还是考虑的情况太少了,最终再无数的debug中把这个方法给pass掉,还是看了一下紫书的讲解。对于菜鸟的我在短时间内把这个题想到用dp,而且解决确实有点难度。看到转移方程时感觉就是通过题意把情况给遍历一遍一样。但是自己却没想到。

既然是区间dp,那么肯定是二维的了 设dp[i][j]表示至少需要增加的括号个数。

那么在区间i~j上,如果s[i]和s[j]匹配的话,那么最少增加的括号个数就是区间i+1~j-1上的了,那么如果不匹配的话,那就应该是有两个正确的序列组合而成,如果在区间i~j上有一个k,正确的序列是由dp[i][k]+dp[k+1][j]而来,(其实这只是构成正确序列的一种办法,还有其他的办法也能构成最少的正确的序列)。边界:当序列为空时dp[][]=0;当序列只有一个字符是,那么肯定要补上一个,显然dp[i][i]=1;然后用递推求出。在这里有一个关键,就是当s[i]和s[j]匹配的话,还需要通过第二种方案更新吗?如果不同动脑子的话我想为了保险需要比较一下看看能不能更优化。然而书上也是强调必须要在第二种方案上在比较更新一下。比如有序列" [ ] [ ] ",显然左右是匹配的,那么会得到序列“ ] [ ”,显然要多加两个括号,不合情理。

另一个重点就是打印,仍然是递归打印,具体看代码吧;

坑点:注意输入and输出

///典型的区间DP
#include <iostream>
#include <bits/stdc++.h>using namespace std;
string s;
int dp[111][111];
int match(char a,char b)
{if(a=='('&&b==')')return 1;if(a=='['&&b==']')return 1;return 0;
}
void print(int i,int j)
{if(i>j)return ;if(i==j){if(s[i]=='('||s[j]==')')printf("()");else printf("[]");return ;}int ans=dp[i][j];if(match(s[i],s[j])&&ans==dp[i+1][j-1]){printf("%c",s[i]);print(i+1,j-1);printf("%c",s[j]);return ;}for(int k=i;k<j;k++){if(ans==dp[i][k]+dp[k+1][j]){print(i,k);print(k+1,j);return ;}}
}
int main()
{int t;scanf("%d",&t);getchar();while(t--){getchar();getline(cin,s);int n=s.size();for(int i=0;i<n;i++){dp[i+1][i]=0;dp[i][i]=1;}for(int i=n-2;i>=0;i--){for(int j=i+1;j<n;j++){dp[i][j]=n;if(match(s[i],s[j]))dp[i][j]=min(dp[i][j],dp[i+1][j-1]);for(int k=i;k<j;k++){dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]);}}}print(0,n-1);printf("\n");if(t)printf("\n");}return 0;
}


这篇关于Brackets sequence UVA - 1626 (典型的区间dp+递归打印路径)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/946224

相关文章

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

poj2505(典型博弈)

题意:n = 1,输入一个k,每一次n可以乘以[2,9]中的任何一个数字,两个玩家轮流操作,谁先使得n >= k就胜出 这道题目感觉还不错,自己做了好久都没做出来,然后看了解题才理解的。 解题思路:能进入必败态的状态时必胜态,只能到达胜态的状态为必败态,当n >= K是必败态,[ceil(k/9.0),k-1]是必胜态, [ceil(ceil(k/9.0)/2.0),ceil(k/9.

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

uva 10055 uva 10071 uva 10300(水题两三道)

情歌两三首,水题两三道。 好久没敲代码了为暑假大作战热热身。 uva 10055 Hashmat the Brave Warrior 求俩数相减。 两个debug的地方,一个是longlong,一个是输入顺序。 代码: #include<stdio.h>int main(){long long a, b;//debugwhile(scanf("%lld%lld", &

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D