成对最小公倍数~写题笔记

2024-04-29 09:38
文章标签 笔记 最小 公倍数 写题

本文主要是介绍成对最小公倍数~写题笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目:

你只需要复制下面的代码并选择正确的语言提交即可通过此题。

 int superLCM( int n ) {
   int res = 0;
    for( int i = 1; i <= n; i++ )
        for( int j = i; j <= n; j++ )
           if( lcm(i, j) == n ) res++; // lcm是i和j的最小共倍数
    return res;
}

给你一个n,求superLCM(n)的值。

 

输入描述:


输入以整数T(T <= 200)开始,表示测试用例的数量。

每种情况都从包含整数n(1≤n≤10^6)的一行开始。

输出描述:


对于每个测试,每行打印函数superLCM( int n )返回的值。

样例输入:

15
2
3
4
6
8
10
12
15
18
20
21
24
25
27
29

样例输出:


2
2
3
5
4
5
8
5
8
8
5
11
3
4
2

 

解题思路: 

枚举n的所有因子 (lcm(i,j)==n;   i,j 一定是n的因子)。

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<math.h>
using namespace std;
const int MAXN = 1e6 + 9;
int a[MAXN];
int lcm(int i, int j)
{return (i / __gcd(i, j)) * j;  //不要写成 (i * j / __gcd(i,j)) , (i * j) 如果太大,会超long long
}
int book[MAXN];
int t = 0;
void deal(int n) // 找 n的因子
{t = 1;int mid = sqrt(n);for(int i = 1; i <= mid; i++){if(n % i == 0){if(book[i] == 0){a[t++] = i;book[i] = 1;}if(book[n/i] == 0){a[t++] = n / i;book[n/i] = 1;}}}
}
int main()
{int T;cin >> T;while(T--){memset(a, 0, sizeof(a));memset(book , 0, sizeof(book));int n;cin >> n;deal(n) ;int ans = 0;for(int i = 1; i < t; i++)  //枚举n的因子{for(int j = 1; j < t; j++){if(lcm(a[i],a[j]) == n){ans++;}}}cout  << (ans + 1 ) / 2 << endl;}return 0;
}

 

这篇关于成对最小公倍数~写题笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/945739

相关文章

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

poj 2175 最小费用最大流TLE

题意: 一条街上有n个大楼,坐标为xi,yi,bi个人在里面工作。 然后防空洞的坐标为pj,qj,可以容纳cj个人。 从大楼i中的人到防空洞j去避难所需的时间为 abs(xi - pi) + (yi - qi) + 1。 现在设计了一个避难计划,指定从大楼i到防空洞j避难的人数 eij。 判断如果按照原计划进行,所有人避难所用的时间总和是不是最小的。 若是,输出“OPETIMAL",若

poj 2135 有流量限制的最小费用最大流

题意: 农场里有n块地,其中约翰的家在1号地,二n号地有个很大的仓库。 农场有M条道路(双向),道路i连接着ai号地和bi号地,长度为ci。 约翰希望按照从家里出发,经过若干块地后到达仓库,然后再返回家中的顺序带朋友参观。 如果要求往返不能经过同一条路两次,求参观路线总长度的最小值。 解析: 如果只考虑去或者回的情况,问题只不过是无向图中两点之间的最短路问题。 但是现在要去要回

poj 3422 有流量限制的最小费用流 反用求最大 + 拆点

题意: 给一个n*n(50 * 50) 的数字迷宫,从左上点开始走,走到右下点。 每次只能往右移一格,或者往下移一格。 每个格子,第一次到达时可以获得格子对应的数字作为奖励,再次到达则没有奖励。 问走k次这个迷宫,最大能获得多少奖励。 解析: 拆点,拿样例来说明: 3 2 1 2 3 0 2 1 1 4 2 3*3的数字迷宫,走两次最大能获得多少奖励。 将每个点拆成两个