C++可变参数接口,批量写入和读取参数值的设计和实现

2024-04-29 09:20

本文主要是介绍C++可变参数接口,批量写入和读取参数值的设计和实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关文章系列

手撕代码: C++实现数据的序列化和反序列化-CSDN博客

目录

1.需求

2.问题分析

3.解决方案

3.1.类型抽象

3.2.参数配置

3.3.参数读取


1.需求

最近在做项目的时候,我们小组做的模块和另外一个小组做的模块的交付通过动态库接口的方式,他们有一个接口是这样的定义的:

//配置参数
int  writeParam(const char* name, const char* data, int len);//读取参数
int  readParam(const char* name, char* data, int len);

name是参数名称,data为序列化的字节数据,小端对齐,数据类型包括一般数据类型int、long、double等;复杂数据类型包括原生数组、结构体、类等。例如:

手撕代码: C++实现数据的序列化和反序列化-CSDN博客

单个参数的配置和读取都很简单,利用之前章节介绍的序列化类,

参数配置可以这样写:

参数1(int)的配置代码如下:

#include "ByteArray.h"
#include "DataStream.h"//【1】配置参数
//[1.1] 序列化 int
int write(const char* name, int value)
{CByteArray byteArray;CDataStream dataStream(&byteArray);dataStream << value;return writeParam(name, byteArray.data(), byteArray.size());
}

参数2(bool)的配置代码如下:

#include "ByteArray.h"
#include "DataStream.h"//【1】配置参数
//[1.2] 序列化 bool
int write(const char* name, bool value)
{return writeParam(name, (char*)&value, sizeof(value));
}

参数3(double)的配置代码如下:

#include "ByteArray.h"
#include "DataStream.h"//【1】配置参数
//[1.3] 序列化 double
int write(const char* name, double value)
{CByteArray byteArray;CDataStream dataStream(&byteArray);dataStream << value;return writeParam(name, byteArray.data(), byteArray.size());
}

参数4(int[10])的配置代码如下:

#include "ByteArray.h"
#include "DataStream.h"//【1】配置参数
//[1.4] 序列化数组 int[]
int write(const char* name, int* value, int len)
{CByteArray byteArray;CDataStream dataStream(&byteArray);for (int i = 0; i < len; i++){dataStream << value[i];}return writeParam(name, byteArray.data(), byteArray.size());
}

参数5(结构体)的配置代码如下:

#include "ByteArray.h"
#include "DataStream.h"typedef  struct  _stControl
{int a;double b;
public:_stControl(){memset(this, 0x00, sizeof(_stControl));}static quint16  getDataSize() {return sizeof(_stControl);}QString  toString() const {return QString("端机控制:%1").arg((int)type);}friend QDataStream& operator<<(QDataStream& dataStream, const _stControl& data)  //序列化{dataStream << data.a;dataStream << data.b;return dataStream;}friend QDataStream& operator>>(QDataStream& dataStream, _stControl& data)       //反序列化{dataStream >> data.a;dataStream >> data.b;return dataStream;}
}stControl;//【1】配置参数
//[1.5] 序列化结构体
int write(const char* name, const stControl& value)
{CByteArray byteArray;CDataStream dataStream(&byteArray);dataStream << value;return writeParam(name, byteArray.data(), byteArray.size());
}

参数6(类)的配置和参数5的配置差不多,就不在这里赘述了。

参数读取可以这样写:

参数1(int)的读取代码如下:

#include "ByteArray.h"
#include "DataStream.h"
#include <memory>//【2】读取参数
//[2.1] 反序列化 int
int read(const char* name, int& value)
{std::unique_ptr<char[]> pData(new char[256]);int result = readParam(name, pData.get(), 256);if (result > 0){//读取成功CByteArray byteArray(pData.get(), result);CDataStream dataStream(&byteArray);dataStream >> value;return 0;}return -1;
}

参数2(bool)的读取代码如下:

#include "ByteArray.h"
#include "DataStream.h"
#include <memory>//【2】读取参数
//[2.2] 反序列化 bool
int read(const char* name, bool& value)
{ if (readParam(name, (char*)&value, 1) > 0){ //读取成功return 0;}return -1;
}

参数3(double)的读取代码如下:

#include "ByteArray.h"
#include "DataStream.h"
#include <memory>//【2】读取参数
//[2.3] 反序列化 double
int read(const char* name, double& value)
{std::unique_ptr<char[]> pData(new char[256]);int result = readParam(name, pData.get(), 256);if (result > 0){ //读取成功CByteArray byteArray(pData.get(), result);CDataStream dataStream(&byteArray);dataStream >> value;return 0;}return -1;
}

参数4(int[10])的读取代码如下:

#include "ByteArray.h"
#include "DataStream.h"
#include <memory>//【2】读取参数
//[2.4] 反序列化 int [10]
int read(const char* name, int* pValue, int len)
{std::unique_ptr<char[]> pData(new char[256]);int result = readParam(name, pData.get(), 256);if (result > 0){//读取成功CByteArray byteArray(pData.get(), sizeof(value));CDataStream dataStream(&byteArray);for (int i = 0; i < len; i++){dataStream >> pValue[i];}return 0;}return -1;
}

参数5(结构体)的读取代码如下:

#include "ByteArray.h"
#include "DataStream.h"typedef  struct  _stControl
{int a;double b;
public:_stControl(){memset(this, 0x00, sizeof(_stControl));}static quint16  getDataSize() {return sizeof(_stControl);}QString  toString() const {return QString("端机控制:%1").arg((int)type);}friend QDataStream& operator<<(QDataStream& dataStream, const _stControl& data)  //序列化{dataStream << data.a;dataStream << data.b;return dataStream;}friend QDataStream& operator>>(QDataStream& dataStream, _stControl& data)       //反序列化{dataStream >> data.a;dataStream >> data.b;return dataStream;}
}stControl;//【2】读取参数
//[2.5] 反序列化结构体
int read(const char* name, stControl& value)
{std::unique_ptr<char[]> pData(new char[256]);int result = readParam(name, pData.get(), 256);if (result > 0){ //读取成功CByteArray byteArray(pData.get(), sizeof(value));CDataStream dataStream(&byteArray);dataStream >> value;return 0;}return -1;
}

参数6(类)的读取和参数5的读取差不多,就不在这里赘述了。

2.问题分析

从上面的需求和简单实现来看,不难得出以下几个结论:

1)不同的数据类型需要写个不同的实现函数,如果包括结构体和类,那就需要写非常多的实现函数,代码会出现急剧膨胀。

2)随着需求的变更,可能增加新的数据类型,那就得重写新的实现的函数,对扩展功能不友好。

3)很难实现批量操作,而且还会出现非常多的if-else-if条件判断。

那么出现这些,怎么去解决呢?我们继续往下看。

3.解决方案

3.1.类型抽象

从第1章节我们可以归纳出3种数据类型:简单数据类型(bool、int、double、结构体和类);字符串std::string(字符数组char[]除外)、数组(包括字符数组和其他类型的数组)。于是我们可以抽象出基类来,代码如下:

//抽象参数类
class IParamField
{
public:virtual ~IParamField() {}virtual CByteArray toByteArray() const = 0;            //序列化数据virtual bool parseData(const char* pData, PUInt64 len) = 0; //反序列化数据virtual IParamField* clone() const = 0;   //克隆对象
};

简单数据类型(bool、int、double、结构体和类)定义为:

template<typename T>
class CBasicParamField : public IParamField
{
public:explicit CBasicParamField(const T value) : m_value(value) {}CByteArray toByteArray() const override {CByteArray data;CDataStream dataStream(&data);dataStream << m_value;return data;}bool parseData(const char* pData, PUInt64 len) override {assert(len == sizeof(T));CByteArray data(pData, len);CDataStream dataStream(&data);dataStream >> m_value;return true;}IParamField* clone() const override {return new CBasicParamField<T>(m_value);}T value() const { return m_value; }
private:T  m_value;
};

字符串std::string(字符数组char[]除外)定义为

template<>
class CBasicParamField<std::string>
{
public:explicit CBasicParamField(const std::string& value = "") : m_value(value) {}CByteArray toByteArray() const {CByteArray data;data.writeRawData(m_value.data(), m_value.size());return data;}bool parseData(const char* pData, PUInt64 len) {m_value.clear();m_value.append(pData, len);return true;}
private:std::string m_value;
};

数组(包括字符数组和其他类型的数组)定义为

template<typename T, size_t N>
class CArrayParamField : public IParamField
{
public:explicit CArrayParamField(const T(&value)[N]) {for (int i = 0; i < N; i++) {m_value[i] = value[i];}}CByteArray toByteArray() const override {CByteArray data;CDataStream dataStream(&data);for (auto& it : m_value) {dataStream << it;}return data;}bool parseData(const char* pData, PUInt64 len) override {assert(len == sizeof(m_value));CByteArray data(pData, len);CDataStream dataStream(&data);for (auto& it : m_value) {dataStream >> it;}return true;}IParamField* clone() const override {return new CArrayParamField<T, N>(m_value);}std::array<T, N> value() const { return m_value; }
private:T m_value[N];
};

3.2.参数配置

有了上面的类定义,我们就可以写一个函数批量写入参数,代码如下:

//参数容器定义
using ParamContainer = std::map<std::string, std::shared_ptr<IParamField>>;//批量读取参数函数
int  batchWrite(const ParamContainer& vecParams)
{int result = -1;CByteArray data;for (auto& it : vecParams){data = it.second->toByteArray();result &= writeParam(it.first.data(), data.data(), data.size());}return result;
}

测试代码如下:

int main()
{ParamContainer vecParams;vecParams["param1"] = std::make_shared<CBasicParamField<int>>(199);vecParams["param2"] = std::make_shared<CBasicParamField<bool>>(false);vecParams["param3"] = std::make_shared<CBasicParamField<double>>(45.856);vecParams["param4"] = std::make_shared<CArrayParamField<int,10>>({4,1,4,6,7,33,54,66,77,888});vecParams["param5"] = std::make_shared<CBasicParamField<stControl>>({2, 86.85});return batchWrite(vecParams);
}

3.3.参数读取

同样,我们仿照可以写出函数批量读取参数,代码如下:

//批量读取参数函数
int  batchRead(ParamContainer& vecParams)
{int result = -1;std::unique_ptr<char[]> pData(new char[256]);for (auto& it : vecParams){result = readParam(it.first.data(), pData.get(), 256);if (result > 0){it.second->parseData(pData.get(), result);          }}return result;
}

测试代码和参数配置的差不多,这里就不多赘述了。

这篇关于C++可变参数接口,批量写入和读取参数值的设计和实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/945699

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形