解决pytorch中Dataloader读取数据太慢的问题

2024-04-28 18:58

本文主要是介绍解决pytorch中Dataloader读取数据太慢的问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、造成的原因
  • 二、查找不匹配的原因
  • 三、解决方法
  • 四、使用方法
  • 后言


前言

最近在使用pytorch框架进行模型训练时遇到一个性能问题,即数据读取的速度远远大于GPU训练的速度,导致整个训练流程中有大部分时间都在等待数据发送到GPU,在资源管理器中呈现出CUDA使用率周期性波动,且大部分时间都是在等待数据加载。


一、造成的原因

其实从前言中就可以知道,造成这样的原因可以理解为:GPU的算力与数据加载速度之间的不匹配

二、查找不匹配的原因

本人使用的GPU为RTX3060,数据集为cifar10,使用的模型为VGG,显然这张显卡对于这个任务来说是绰绰有余的,无论是显存还是算力。
但是几经测试发现,数据从内存送到GPU的速度实在是太慢了,去百度了很久都没有很好的解决。那回到这个问题的本身,既然是数据加载导致的性能差,那问题就出在pytorch的datasetdataloader中。

在dataset中,会将数据从磁盘读入内存中,如果启用了dataloader中的pin_memory,就会让数据常驻内存,同时设置num_workers还能实现多进程读取数据,但即使设置了这些,数据加载速度依然没有质的提升。

博主发现,dataset中的transform是导致性能慢的一个原因,dataset中有个函数为__getitem__,每获取一个数据就会让这个数据过一次transform。相信大家都写过如下的代码:

transform = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.4914, 0.4822, 0.4465], [0.5, 0.5, 0.5])
])

但是这里的ToTensor和Normalize完全没必要没读一次数据都处理一次,可以在数据加载到内存的时候就直接全部处理完,这样每个数据只需要经历一次ToTensor和Normalize,这会大大提高数据读取速度,大家可以自行测试一次ToTensor和Normalize所需要的时间,还是非常大的。

在训练的过程中,相信大家也写过如下代码:

for x, y in dataloader:x, y = x.cuda(), y.cuda()

经过博主测试,将数据发送到GPU也是非常耗时的,那为什么不一次性全部加载到GPU里面呢?当然前提是你的GPU显存够大。

三、解决方法

以上分析可以总结为两点:

  1. 数据的预处理有一部分可以提前对全部数据做一遍;
  2. 如果显存足够,可以将数据全部加载到GPU中。

基于此,我们可以重载类,这里以pytorch自带的cifar10为例:

class CUDACIFAR10(CIFAR10):def __init__(self, root: str, train: bool = True,to_cuda: bool = True,half: bool = False,pre_transform: Optional[Callable] = None,transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False) -> None:super().__init__(root, train, transform, target_transform, download)if pre_transform is not None:self.data = self.data.astype("float32")for index in range(len(self)):"""ToTensor的操作会检查数据类型是否为uint8, 如果是, 则除以255进行归一化, 这里data提前转为float,所以手动除以255."""self.data[index] = pre_transform(self.data[index]/255.0).numpy().transpose((1, 2, 0))self.targets[index] = torch.Tensor([self.targets[index]]).squeeze_().long()if to_cuda:self.targets[index] = self.targets[index].cuda()self.data = torch.Tensor(self.data).permute((0, 3, 1, 2))if half:self.data = self.data.half()if to_cuda:self.data = self.data.cuda()def __getitem__(self, index: int) -> Tuple[Any, Any]:"""Args:index (int): IndexReturns:tuple: (image, target) where target is index of the target class."""img, target = self.data[index], self.targets[index]if self.transform is not None:img = self.transform(img)if self.target_transform is not None:target = self.target_transform(target)return img, target

to_cuda为True就会让数据全部加载到GPU中,后续就不需要写x, y = x.cuda(), y.cuda()了。
pre_transform就是让所有数据提前进行的处理,例如使用ToTensor和Normalize,后续调用时不会再进行这些处理。
transform为后续调用时会进行的处理,一般就是一些随机处理过程。

在博主的测试过程中发现,解决了以上问题后,一个epoch只要2秒就能完成,而平时需要15秒,并且任务管理器中的CUDA几乎全程拉满。唯一的代价就是显存占用更高了,这何尝不是一种空间换时间。

四、使用方法

这里直接粘贴我为这个类写的注释

- 使用pytorch自带的CIFAR10时, 每读取一个数据都会调用一次transforms, 其中ToTensor()和Normalize()会消耗巨大的时间如果你的数据集非常的大, 那么一个epoch将会花费非常多的时间用于读取数据, 如果还要将数据送入GPU, 那么时间将会继续增加。- 一般的写法如下:for epoch in range(epochs):for x, y in dataloader:x, y = x.cuda(), y.cuda()如果你的数据集很大并且GPU算力很强, 那么读取数据并发送的GPU将会成为性能瓶颈。- CUDACIFAR10是专门针对pytorch的CIFAR10进行优化的, 使用的前提是你的显存足够的大, 至少8GB, 且读取数据已经是性能瓶颈。CUDACIFAR10的参数与CIFAR10非常相似, 新增的参数为:to_cuda: bool, 是否将数据集常驻GPU, default=Truehalf: bool, 进一步降低数据所占据的显存, 在混合精度训练时使用, 否则可能存在意外(例如梯度值overflow)pre_transform: 传入一个transforms, 如果不为None, 则会在初始化数据时直接对所有数据进行对应的转换, 在后续调用时将不会使用pre_transform. 可以将ToTensor()和Normalize()作为pre_transform, 这会大幅度减少读取时间.- CUDACIFAR10的用法如下:pre_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.4914, 0.4822, 0.4465], [0.5, 0.5, 0.5])])dataset = CUDACIFAR10(..., to_cuda=True, pre_transform=pre_transform, ...)dataloader = Dataloader(dataset, ..., pin_memory=False, num_workers=0, ...)...for epoch in range(epochs):for x, y in dataloader:# 不需要写x, y = x.cuda(), y.cuda(), 除非to_cuda=False...- 使用CUDACIFAR10需要注意如果启用了to_cuda, 那么Dataloader不能启用pin_memory, pin_memory是将数据常驻内存, 这会产生冲突.同时num_workers=0.- 如果参数to_cuda=False, pre_transform=None, 那么该类与CIFAR10用法完全一致.

后言

本文写作仓促,可能有部分错误,欢迎大家的批评与指正。

这篇关于解决pytorch中Dataloader读取数据太慢的问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943997

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Mysql DATETIME 毫秒坑的解决

《MysqlDATETIME毫秒坑的解决》本文主要介绍了MysqlDATETIME毫秒坑的解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 今天写代码突发一个诡异的 bug,代码逻辑大概如下。1. 新增退款单记录boolean save = s

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言