解决pytorch中Dataloader读取数据太慢的问题

2024-04-28 18:58

本文主要是介绍解决pytorch中Dataloader读取数据太慢的问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、造成的原因
  • 二、查找不匹配的原因
  • 三、解决方法
  • 四、使用方法
  • 后言


前言

最近在使用pytorch框架进行模型训练时遇到一个性能问题,即数据读取的速度远远大于GPU训练的速度,导致整个训练流程中有大部分时间都在等待数据发送到GPU,在资源管理器中呈现出CUDA使用率周期性波动,且大部分时间都是在等待数据加载。


一、造成的原因

其实从前言中就可以知道,造成这样的原因可以理解为:GPU的算力与数据加载速度之间的不匹配

二、查找不匹配的原因

本人使用的GPU为RTX3060,数据集为cifar10,使用的模型为VGG,显然这张显卡对于这个任务来说是绰绰有余的,无论是显存还是算力。
但是几经测试发现,数据从内存送到GPU的速度实在是太慢了,去百度了很久都没有很好的解决。那回到这个问题的本身,既然是数据加载导致的性能差,那问题就出在pytorch的datasetdataloader中。

在dataset中,会将数据从磁盘读入内存中,如果启用了dataloader中的pin_memory,就会让数据常驻内存,同时设置num_workers还能实现多进程读取数据,但即使设置了这些,数据加载速度依然没有质的提升。

博主发现,dataset中的transform是导致性能慢的一个原因,dataset中有个函数为__getitem__,每获取一个数据就会让这个数据过一次transform。相信大家都写过如下的代码:

transform = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.4914, 0.4822, 0.4465], [0.5, 0.5, 0.5])
])

但是这里的ToTensor和Normalize完全没必要没读一次数据都处理一次,可以在数据加载到内存的时候就直接全部处理完,这样每个数据只需要经历一次ToTensor和Normalize,这会大大提高数据读取速度,大家可以自行测试一次ToTensor和Normalize所需要的时间,还是非常大的。

在训练的过程中,相信大家也写过如下代码:

for x, y in dataloader:x, y = x.cuda(), y.cuda()

经过博主测试,将数据发送到GPU也是非常耗时的,那为什么不一次性全部加载到GPU里面呢?当然前提是你的GPU显存够大。

三、解决方法

以上分析可以总结为两点:

  1. 数据的预处理有一部分可以提前对全部数据做一遍;
  2. 如果显存足够,可以将数据全部加载到GPU中。

基于此,我们可以重载类,这里以pytorch自带的cifar10为例:

class CUDACIFAR10(CIFAR10):def __init__(self, root: str, train: bool = True,to_cuda: bool = True,half: bool = False,pre_transform: Optional[Callable] = None,transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False) -> None:super().__init__(root, train, transform, target_transform, download)if pre_transform is not None:self.data = self.data.astype("float32")for index in range(len(self)):"""ToTensor的操作会检查数据类型是否为uint8, 如果是, 则除以255进行归一化, 这里data提前转为float,所以手动除以255."""self.data[index] = pre_transform(self.data[index]/255.0).numpy().transpose((1, 2, 0))self.targets[index] = torch.Tensor([self.targets[index]]).squeeze_().long()if to_cuda:self.targets[index] = self.targets[index].cuda()self.data = torch.Tensor(self.data).permute((0, 3, 1, 2))if half:self.data = self.data.half()if to_cuda:self.data = self.data.cuda()def __getitem__(self, index: int) -> Tuple[Any, Any]:"""Args:index (int): IndexReturns:tuple: (image, target) where target is index of the target class."""img, target = self.data[index], self.targets[index]if self.transform is not None:img = self.transform(img)if self.target_transform is not None:target = self.target_transform(target)return img, target

to_cuda为True就会让数据全部加载到GPU中,后续就不需要写x, y = x.cuda(), y.cuda()了。
pre_transform就是让所有数据提前进行的处理,例如使用ToTensor和Normalize,后续调用时不会再进行这些处理。
transform为后续调用时会进行的处理,一般就是一些随机处理过程。

在博主的测试过程中发现,解决了以上问题后,一个epoch只要2秒就能完成,而平时需要15秒,并且任务管理器中的CUDA几乎全程拉满。唯一的代价就是显存占用更高了,这何尝不是一种空间换时间。

四、使用方法

这里直接粘贴我为这个类写的注释

- 使用pytorch自带的CIFAR10时, 每读取一个数据都会调用一次transforms, 其中ToTensor()和Normalize()会消耗巨大的时间如果你的数据集非常的大, 那么一个epoch将会花费非常多的时间用于读取数据, 如果还要将数据送入GPU, 那么时间将会继续增加。- 一般的写法如下:for epoch in range(epochs):for x, y in dataloader:x, y = x.cuda(), y.cuda()如果你的数据集很大并且GPU算力很强, 那么读取数据并发送的GPU将会成为性能瓶颈。- CUDACIFAR10是专门针对pytorch的CIFAR10进行优化的, 使用的前提是你的显存足够的大, 至少8GB, 且读取数据已经是性能瓶颈。CUDACIFAR10的参数与CIFAR10非常相似, 新增的参数为:to_cuda: bool, 是否将数据集常驻GPU, default=Truehalf: bool, 进一步降低数据所占据的显存, 在混合精度训练时使用, 否则可能存在意外(例如梯度值overflow)pre_transform: 传入一个transforms, 如果不为None, 则会在初始化数据时直接对所有数据进行对应的转换, 在后续调用时将不会使用pre_transform. 可以将ToTensor()和Normalize()作为pre_transform, 这会大幅度减少读取时间.- CUDACIFAR10的用法如下:pre_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.4914, 0.4822, 0.4465], [0.5, 0.5, 0.5])])dataset = CUDACIFAR10(..., to_cuda=True, pre_transform=pre_transform, ...)dataloader = Dataloader(dataset, ..., pin_memory=False, num_workers=0, ...)...for epoch in range(epochs):for x, y in dataloader:# 不需要写x, y = x.cuda(), y.cuda(), 除非to_cuda=False...- 使用CUDACIFAR10需要注意如果启用了to_cuda, 那么Dataloader不能启用pin_memory, pin_memory是将数据常驻内存, 这会产生冲突.同时num_workers=0.- 如果参数to_cuda=False, pre_transform=None, 那么该类与CIFAR10用法完全一致.

后言

本文写作仓促,可能有部分错误,欢迎大家的批评与指正。

这篇关于解决pytorch中Dataloader读取数据太慢的问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943997

相关文章

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

解决idea启动项目报错java: OutOfMemoryError: insufficient memory

《解决idea启动项目报错java:OutOfMemoryError:insufficientmemory》:本文主要介绍解决idea启动项目报错java:OutOfMemoryError... 目录原因:解决:总结 原因:在Java中遇到OutOfMemoryError: insufficient me

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在

解决java.util.RandomAccessSubList cannot be cast to java.util.ArrayList错误的问题

《解决java.util.RandomAccessSubListcannotbecasttojava.util.ArrayList错误的问题》当你尝试将RandomAccessSubList... 目录Java.util.RandomAccessSubList cannot be cast to java.

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤

java反序列化serialVersionUID不一致问题及解决

《java反序列化serialVersionUID不一致问题及解决》文章主要讨论了在Java中序列化和反序列化过程中遇到的问题,特别是当实体类的`serialVersionUID`发生变化或未设置时,... 目录前言一、序列化、反序列化二、解决方法总结前言serialVersionUID变化后,反序列化失