数据科学和机器学习成为美国增长最快的岗位

2024-04-28 13:48

本文主要是介绍数据科学和机器学习成为美国增长最快的岗位,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据科学和机器学习成为美国增长最快的岗位

原文:  Why data science and machine learning are the fastest growing jobsin the US

来源: https://www.infoworld.com/article/3259891/data-science/why-data-science-and-machine-learning-are-the-fastest-growing-jobs-in-the-us.html


导读:

  1. LinkedIn对比了2012年和2017年的数据。排在前两位的是机器学习岗位和数据科学家,前者在过去五年里增加了9.8倍,后者自2012年以来增加了6.5倍。在排名前十的岗位中,有四个都与数据科学有关,而且其中三个都位列前五。

  2. 《哈佛商业评论》的一项研究发现,“在用数据来驱动决策方面处于业内前三分之一的企业,其生产率平均比竞争对手高5%,利润平均比竞争对手高6%”。

  3. 麦肯锡全球研究院估计,到2024年,美国数据科学岗位的缺口可能达到25万。数据科学技能方面的差距促使企业争先恐后地培训或是招募能满足其分析需求的人才。尽管培训班和在线课程试图填补这一缺口,但未来几年,企业可能将陷入激烈的人才争夺战。


原文翻译:

职场社交网站LinkedIn近日根据自身的数据,发布了一份报告,列出了美国增长最快的工作岗位。为了编制这份报告,LinkedIn对比了2012年和2017年的数据。排在前两位的是机器学习岗位和数据科学家,前者在过去五年里增加了9.8倍,后者自2012年以来增加了6.5倍。在排名前十的岗位中,有四个都与数据科学有关,而且其中三个都位列前五。为什么数据科学岗位、尤其是机器学习岗位增长得如此之快呢?


虽然很多报告和出版物都把数据科学称为美国最受关注的岗位之一,但LinkedIn报告的独到之处在于,它提到了该岗位迅速增长的现象。以下是机器学习和数据科学岗位为何增长最快的四个原因。


数据量飙升

大约90%的数据是在过去两年里产生的,而且现在每天产生的数据量达到2.5quintillion(10的18次方)字节。为了让各位对这一数字有一个概念,不妨看看数据公司Domo提供的一些数字:

  ·  每分钟,美国人使用2,657,700GB数据

  ·  每分钟,Instagram用户发布46,750张照片

  ·  每分钟,15,220,700条短信发出

  ·  每分钟,谷歌进行3,607,080次网络搜索


所有这些行为都会产生数据,使数据量大到令人难以想象。由于数据如此之多,企业需要能处理这些数据的人手。例如,Instagram想知道,在每分钟上传的那46,750张照片中,哪张照片被分享的次数最多?哪一类型的内容在该平台上最受欢迎?就从数据中获取的信息数量而言,这只是冰山一角。由于数据量呈指数级增长,对数据分析人才的需求也迅速上涨。


由数据驱动的决策能带来更多好处

对很多企业来说,数据只有能让企业获利,才是有用的,而这一点毋庸置疑。数据不仅能帮助企业作出更明智的决策,而且这些决策也常常会带来经济效益。《哈佛商业评论》的一项研究发现,“在用数据来驱动决策方面处于业内前三分之一的企业,其生产率平均比竞争对手高5%,利润平均比竞争对手高6%”。


数据使企业可以只根据一个个数字,作出不带个人色彩的决策,而不是依赖于CEO的直觉。如果数据能增强企业在市场上的盈利能力和竞争力,这无疑是更多企业雇佣数据科学人才的一个原因。他们能分析数据,用通俗的语言进行阐释,以便让团队明白如何采取下一步行动。


机器学习正在改变企业的经营方式

机器学习是一种人工智能(AI),它能真正地学习和进化。如今,机器学习已经被很多行业采用,不管是营销、金融还是医疗行业。高级算法可以节省时间和资源,根据过去学习到的知识,迅速作出正确的决定。例如,传统金融机构中的信贷人员越来越少,因为机器学习算法可以在不需要人类帮助的情况下评估风险,进而作出决定。


如今,机器学习即服务(MLaaS)已经变成现实,更多的企业开始使用这类平台,而不是投入大量资源和技能来建立自己的机器学习平台。普通的企业人员也能使用机器学习平台,从而不需要高管的介入,就可以作出明智的决定。企业的经营方式将彻底改变,但我们仍将依靠机器学习算法的开发人员,来推动这项技术的发展。


机器学习能提供更准确的预测

机器学习算法常常能发现人类发现不了的隐藏信息。由于需要处理的数据太多,哪怕是整个数据科学家团队也可能会漏掉某个趋势或模式。预测市场的能力是企业保持竞争力的一种方法,而机器学习算法使这成为了可能。企业想招募那些能不断改进预测模型的机器学习专家,以便获得竞争优势,在市场上始终保持领先地位。


在可预见的未来,数据科学和机器学习岗位将继续增长。考虑到数据量的庞大以及它对企业利润的推动作用,企业将不断寻找适合这些岗位的人才。然而,需求显然超过了供应。麦肯锡全球研究院估计,到2024年,美国数据科学岗位的缺口可能达到25万。数据科学技能方面的差距促使企业争先恐后地培训或是招募能满足其分析需求的人才。尽管培训班和在线课程试图填补这一缺口,但未来几年,企业可能将陷入激烈的人才争夺战。


本次转自:品觉 微信公众号(pinjueche.com)

车品觉简介

畅销书《决战大数据》作者;国信优易数据研究院院长;红杉本中国基金专家合伙人;浙江大学管理学院客席教授;全国信标委员;数据标准工作组副组长;美丽心灵基金会桑珠利民基金副主席。

原阿里巴巴集团副总裁,首任阿里数据委员会会长现担任中国信息协会大数据分会副会长、中国计算机学会大数据专家委员会副主任、粤港信息化专家委员、中国计算数学学会第九届理事、清华大学教育指导委员(大数据项目)、浙江大学管理学院客席教授等职。

版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。

商务合作|约稿 请加qq:365242293  


更多相关知识请回复:“ 月光宝盒 ”;

数据分析(ID : ecshujufenxi )互联网科技与数据圈自己的微信,也是WeMedia自媒体联盟成员之一,WeMedia联盟覆盖5000万人群。

这篇关于数据科学和机器学习成为美国增长最快的岗位的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943422

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

SpringBoot整合Canal+RabbitMQ监听数据变更详解

《SpringBoot整合Canal+RabbitMQ监听数据变更详解》在现代分布式系统中,实时获取数据库的变更信息是一个常见的需求,本文将介绍SpringBoot如何通过整合Canal和Rabbit... 目录需求步骤环境搭建整合SpringBoot与Canal实现客户端Canal整合RabbitMQSp

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核