曾经我是一个只会excel的数据分析师,直到我遇到了……

2024-04-28 13:48

本文主要是介绍曾经我是一个只会excel的数据分析师,直到我遇到了……,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我是一个数据分析师。


准确来说我是一个当年只会excel数据透视表,就天不怕地不怕地来当数据分析师的人。当年的某一天,我的老板Q我:

 

小刘啊,我小姨子给了我一个全国市委书记的名单,你帮我看看,有什么规律啊?

 

我接过老板的任务,心想:老板的小姨子在政府里混的不错啊,目标居然是市委书记。难怪老板平时这么多政府项目,我得看看什么她什么目的。

 

我迅速打开了表格。发现表格里把往期和现任的每一位市委书记信息都调查得很清楚。



既然是小姨子的要求,我先来看看市委书记里有多少女性好了:


首先我点开数据透视表,调整参数,然后进行运算得到女性市委书记的数量,写上函数,求出了女性市委书记的比例,最后我制作图表对图标参数进行调整,得出了我的第一个结论:女性市委书记的比例是:2.77%。恩,似乎比较低,小姨子要加油啊。



正当我想把这个结论先截个图给老板看看,顺便挣个表现时,老板先给我发信息了:

 

小刘啊,刚交给你的任务暂时不做了,昨天刚来公司上班的王大鹏刚看到我在看这个表,已经帮我做了一版结论了,图看着还挺专业。


突然之间没了挣表现的机会,我很郁闷。王大鹏是谁?多年来的职业敏感性告诉我,这个新来的,我得去会会!于是我拿着零食来到王大鹏的工位。半小时后,新人大鹏就已经被我掌握:

 

“你想知道我怎么这么快做分析?简单!”大鹏很热情的说。


“我就使用了几行python代码,你看。”



我:“Python?那是啥?”


大鹏:“Python本来是一门计算机程序语言,非常简单好学。目前也是做数据分析的主流语言之一,拥有非常丰富的工具包。比如我这里用到的pandas。”



“有了这些工具包,我就可以使用里面的读取(read_csv)功能,把数据加载进来.或者说叫做“提取数据字段”,比如我给你演示下把名字、省份和出生年份给提取出来。”



“然后就是尝试者先做做简单的分析了。可以调用Matplotlib和Seaborn两个工具包,前者是做图表的,后者是做图表可视化的,用熟后比excel简单多了。选择好你的数据,再调用工具包里的图表,图表就有啦,其实和excel处理好数据再选择图表的逻辑是类似的。 ”  



“我一般都是先对比两个维度,比如我尝试着分析市委书记们的出生年月和任期的关系,直接把计算的结果整理好,调用表格模板,就可以出这样的图啦。




你注意看,其实中国大部分的官员都是任期1-4年的,但是1950年-1960年出生,现在大概60岁上下的人,任期普遍要比其他年龄段的人要长几年,这里面水比较深呐: ” 



“不明觉厉!可是这张图表达得会不会太晦涩了?”我问道。

 

“没错,刘哥,看来你很有经验。我也觉得想直方图还是不清楚,但是热力图就好很多了,还能看看不同岁数不同任期的人都有多少,所以我就改了种表达。刘哥你看,看是不是好多了?”



我突然有点庆幸我没把我简陋的图发给老板,同时也不禁有一丝紧迫感。虽然说这些分析,我用excel慢慢做也能捣鼓出来,但我点来点去,每换一个数据维度就要重新做一次透视表,还要调整样式,肯定不如人家写程序快。而且大鹏用的python代码明显有更强的灵活性,如果将来老板让我做一些更难的数据分析,大鹏不就很快能取代我了?

 

不行,为了保住饭碗,我得需要迭代一下自己的技术啊!于是我继续像大鹏打探:

 

我:“那Python难学么?学到你这样要多久呢?

 

大鹏露出了有点天真的笑容:要系统的学当然没几个月是不行的,不过也有些套路,比如刘哥你本来就会excel,了解数据,再多试试用python代码完成像刚才老板给的这样的简单的统计分析,可能1周就能上手啦。

 

我:哦?这么快,那给我推荐点教程啊书什么的。

 

大鹏神秘一笑,转身就甩了我一门《Python数据分析师》训练营,限时免费。如果你想学Python数据编程,我强烈建议你从一次“要动手、有目标、有答疑”的7天《Python数据分析师训练营》开始学习。


喏,就是下面这个~


想要免费加入《Python数据分析师》训练营的小伙伴,请扫描下方二维码,进入网易云课堂微专业服务号后,根据系统提示,就可以加入数据分析师学习QQ群啦!


除了免费参与训练营外,进入数据分析师学习QQ群后还可领取一份数据分析资料包(包含房价、城市设施、人口等城市数据;知乎、淘宝等网页数据及精选电子书等)。

这篇关于曾经我是一个只会excel的数据分析师,直到我遇到了……的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943417

相关文章

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

在MySQL执行UPDATE语句时遇到的错误1175的解决方案

《在MySQL执行UPDATE语句时遇到的错误1175的解决方案》MySQL安全更新模式(SafeUpdateMode)限制了UPDATE和DELETE操作,要求使用WHERE子句时必须基于主键或索引... mysql 中遇到的 Error Code: 1175 是由于启用了 安全更新模式(Safe Upd

解决JavaWeb-file.isDirectory()遇到的坑问题

《解决JavaWeb-file.isDirectory()遇到的坑问题》JavaWeb开发中,使用`file.isDirectory()`判断路径是否为文件夹时,需要特别注意:该方法只能判断已存在的文... 目录Jahttp://www.chinasem.cnvaWeb-file.isDirectory()遇

Python创建Excel的4种方式小结

《Python创建Excel的4种方式小结》这篇文章主要为大家详细介绍了Python中创建Excel的4种常见方式,文中的示例代码简洁易懂,具有一定的参考价值,感兴趣的小伙伴可以学习一下... 目录库的安装代码1——pandas代码2——openpyxl代码3——xlsxwriterwww.cppcns.c

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

使用Python在Excel中插入、修改、提取和删除超链接

《使用Python在Excel中插入、修改、提取和删除超链接》超链接是Excel中的常用功能,通过点击超链接可以快速跳转到外部网站、本地文件或工作表中的特定单元格,有效提升数据访问的效率和用户体验,这... 目录引言使用工具python在Excel中插入超链接Python修改Excel中的超链接Python