C/C++实现高性能并行计算——1.pthreads并行编程(中)

2024-04-28 00:44

本文主要是介绍C/C++实现高性能并行计算——1.pthreads并行编程(中),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录

  1. pthreads并行编程(上)
  2. pthreads并行编程(中)
  3. pthreads并行编程(下)
  4. 使用OpenMP进行共享内存编程

文章目录

  • 系列文章目录
  • 前言
  • 一、临界区
    • 1.1 `pi`值估计的例子
    • 1.2 找到问题
      • 竞争条件
      • 临界区
  • 二、忙等待
  • 三、互斥量
    • 3.1 定义和初始化互斥锁
    • 3.2 销毁。
    • 3.3 获得临界区的访问权(上锁)
    • 3.4 退出临界区(解锁)
      • 3.5 小节
    • 3.6 改进`pi`值估计的例子
  • 四、忙等待 vs 互斥量
  • 总结
  • 参考


前言

在C++实现高性能并行计算——1.pthreads并行编程(上)一文中介绍了pthreads的基本编程框架,但是不是随便什么程序都像上一文中轻松多线程编程,会遇到许多问题,涉及到许多底层逻辑。本篇文章就是在讲其底层逻辑。


一、临界区

1.1 pi值估计的例子

在这里插入图片描述
并行化该例子:

// pth_pi_wrong.c
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>#define n 100000000int num_thread;
double sum = 0;void* thread_sum(void* rank);int main(int argc, char* argv[]){long thread;pthread_t* thread_handles;double pi;num_thread = strtol(argv[1], NULL, 10);thread_handles = (pthread_t *)malloc(num_thread * sizeof(pthread_t *));for (thread = 0; thread < num_thread; thread++){pthread_create(&thread_handles[thread], NULL, thread_sum, (void *)thread);}for (thread = 0; thread < num_thread; thread++){pthread_join(thread_handles[thread], NULL);}pi = 4 *sum;printf("Result is %lf\n", pi);free(thread_handles);return 0;
}void* thread_sum(void *rank){long my_rank = (long)rank;double factor;long long i;long long my_n = n / num_thread; //每个线程所要计算的个数,这里理想情况,可以被整除long long my_first_i = my_n * my_rank;long long my_last_i = my_first_i + my_n;if (my_first_i % 2 == 0){factor = 1.0;}else{factor = -1.0;}for (i = my_first_i; i < my_last_i; i++, factor = -factor){sum += factor / (2 * i + 1);}return NULL;
}

运行结果:
在这里插入图片描述在这里插入图片描述

1.2 找到问题

在这里插入图片描述

竞争条件

当多个线程都要访问共享变量或共享文件这样的共享资源时,如果至少其中一个访问是更新操作,那么这些访问就可能会导致某种错误,称之为竞争条件。

临界区

临界区就是一个更新共享资源的代码段,一次只允许一个线程执行该代码段。


二、忙等待

如何进行更新操作,又要保证结果的正确性?——忙等待
使用标志变量flag,主线程将其初始化为0

y = compute(my_rank);
while (flag != my_rank); // 忙等待,要一直等待它的flag等于其rank才会执行下面的操作
x += y; //就是临界区
flag++;

在忙等待中,线程不停地测试某个条件,但实际上,直到某个条件满足之前,这些测试都是徒劳的。
缺点:浪费CPU周期,对性能产生极大的影响。


三、互斥量

在这里插入图片描述pthread_mutex_t 是 POSIX 线程(pthreads)库中用于实现互斥锁(Mutex)的数据类型。互斥锁是并行编程中常用的同步机制,用于控制多个线程对共享资源的访问,确保一次只有一个线程可以访问该资源。

3.1 定义和初始化互斥锁

  • 可以静态初始化:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

  • 或动态初始化:使用 pthread_mutex_init() 函数。这个函数提供了一种灵活的方式来设置互斥锁的属性,不同于使用 PTHREAD_MUTEX_INITIALIZER 进行静态初始化。动态初始化允许程序在运行时根据需要创建和配置互斥锁。
    该函数原型:

    int pthread_mutex_init(pthread_mutex_t *mutex,            /*out*/const pthread_mutexattr_t *attr		/*in */);
    
      参数:- mutex:指向 pthread_mutex_t 结构的指针,该结构代表互斥锁。这个互斥锁在调用 pthread_mutex_init() 之前不需要被特别初始化。- attr:指向 pthread_mutexattr_t 结构的指针,该结构用于定义互斥锁的属性。如果传入 NULL,则使用默认属性。返回值:- 成功:函数返回 0。- 失败:返回一个错误码,表示初始化失败的原因。常见的错误码包括:- EINVAL:提供了无效的属性。- ENOMEM:没有足够的内存来初始化互斥锁。
    

3.2 销毁。

使用 pthread_mutex_destroy() 函数销毁互斥锁,释放任何相关资源。这通常在互斥锁不再需要时进行。
该函数原型是

int pthread_mutex_destroy(pthread_mutex_t *mutex);

3.3 获得临界区的访问权(上锁)

使用 pthread_mutex_lock() 函数来锁定互斥锁。如果互斥锁已被其他线程锁定,调用线程将阻塞,直到互斥锁被解锁。
该函数原型:

int pthread_mutex_lock(pthread_mutex_t *mutex);

参数

  • mutex:指向已初始化的 pthread_mutex_t 结构的指针,表示要锁定的互斥锁。

返回值

  • 成功:如果函数成功锁定互斥锁,它返回 0。
  • 失败:返回一个错误码,表明为什么锁定失败。常见的错误码包括:
    • EINVAL:如果互斥锁未正确初始化,会返回此错误。
    • EDEADLK:如果是错误检查互斥锁,并且当前线程已经锁定了这个互斥锁,会返回此错误,指示死锁风险。

3.4 退出临界区(解锁)

使用 pthread_mutex_unlock() 函数来解锁互斥锁,允许其他正在等待的线程获得资源访问权限。
该函数原型:

int phtread_mutex_unloc(pthread_mutex_t* mutex_p);

参数

  • mutex:指向需要解锁的 pthread_mutex_t 结构的指针。该互斥锁应该是先前由调用线程使用 pthread_mutex_lock() 锁定的。

返回值

  • 0:函数成功解锁了互斥锁。
  • 失败:返回一个错误码,表明为什么锁定失败。常见的错误码包括:
    • EINVAL:如果互斥锁没有被正确初始化,或者互斥锁指针无效,将返回此错误。
    • EPERM:如果当前线程不持有该互斥锁的锁定权,即尝试解锁一个它并没有锁定或者根本未被锁定的互斥锁,将返回此错误。

3.5 小节

pthread_mutex_t 是 POSIX 线程(pthreads)库中用于实现互斥锁(Mutex)的数据类型。互斥锁是并行编程中常用的同步机制,用于控制多个线程对共享资源的访问,确保一次只有一个线程可以访问该资源。

互斥锁的基本概念

  • 互斥:互斥锁保证当一个线程访问共享资源时,其他线程必须等待,直到该资源被释放(解锁),从而防止数据冲突和不一致性。
  • 死锁:如果不正确使用互斥锁,可能导致死锁,即两个或多个线程相互等待对方释放资源,结果都无法继续执行。

使用 pthread_mutex_t 类型的互斥锁通常包括以下几个步骤:

  1. 定义和初始化互斥锁
  2. 锁定互斥锁
  3. 访问共享资源
  4. 解锁互斥锁
  5. 销毁互斥锁

下面是使用 pthread_mutex_t 的简单示例:

#include <pthread.h>
#include <stdio.h>pthread_mutex_t lock;  //拿到pthread_mutex_t类型的对象lock,它这里还是个全局变量
int counter = 0;void* increment_counter(void* arg) {pthread_mutex_lock(&lock);   // 锁定互斥锁int i = *((int*) arg);counter += i;                // 修改共享资源printf("Counter value: %d\n", counter);pthread_mutex_unlock(&lock); // 解锁互斥锁return NULL;
}int main() {pthread_t t1, t2;pthread_mutex_init(&lock, NULL); // 初始化互斥锁int increment1 = 1;int increment2 = 2;pthread_create(&t1, NULL, increment_counter, &increment1);pthread_create(&t2, NULL, increment_counter, &increment2);pthread_join(t1, NULL);pthread_join(t2, NULL);pthread_mutex_destroy(&lock); // 销毁互斥锁printf("Final Counter value: %d\n", counter);return 0;
}

注意事项

  • 避免死锁:确保每个锁定的互斥锁最终都会被解锁,特别是在可能引发异常或提前返回的代码段之前。
  • 适当的锁粒度:选择正确的锁粒度很重要。过粗的锁可能导致性能低下,而过细的锁可能增加复杂性和死锁的风险。

互斥锁是保护共享数据和防止并发错误的关键工具,在设计多线程程序时需要仔细管理。

3.6 改进pi值估计的例子

主要是改进线程函数里面访问全局变量的那段代码(也就是临界区)

void* thread_sum(void *rank){long my_rank = (long)rank;double factor;long long i;long long my_n = n / num_thread; //每个线程所要计算的个数,这里理想情况,可以被整除long long my_first_i = my_n * my_rank;long long my_last_i = my_first_i + my_n;//这里定义my_sum是因为不想频繁调用互斥锁的访问临界区的权限(for循环里),所以只在最后将my_sum赋给sum的时候调用访问权限和退出权限double my_sum;  if (my_first_i % 2 == 0){factor = 1.0;}else{factor = -1.0;}for (i = my_first_i; i < my_last_i; i++, factor = -factor){my_sum += factor / (2 * i + 1);}pthread_mutex_lock(&mutex);sum += my_sum;pthread_mutex_unlock(&mutex);//在一个线程函数中只调用一次申请锁和释放锁的条件return NULL;
}

主函数:

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>#define n 100000000pthread_mutex_t mutex;int num_thread;
double sum = 0;void* thread_sum(void* rank);int main(int argc, char* argv[]){long thread;pthread_t* thread_handles;double pi;num_thread = strtol(argv[1], NULL, 10);thread_handles = (pthread_t *)malloc(num_thread * sizeof(pthread_t *));//初始化互斥锁pthread_mutex_init(&mutex, NULL);for (thread = 0; thread < num_thread; thread++){pthread_create(&thread_handles[thread], NULL, thread_sum, (void *)thread);}for (thread = 0; thread < num_thread; thread++){pthread_join(thread_handles[thread], NULL);}pi = 4 *sum;printf("Result is %lf\n", pi);free(thread_handles);pthread_mutex_destroy(&mutex);return 0;
}

运行结果:
在这里插入图片描述


四、忙等待 vs 互斥量

在这里插入图片描述


总结

  1. 发现问题:线程之间会产生竞争条件

  2. 解决思路:临界区:在更新共享资源的代码段处,一次只允许一个线程执行该代码段。但是如何使得该区域每次只能有一个线程访问(如何使得该区域成为临界区

  3. 解决方法:

    • 忙等待:使用标志变量flag,在线程函数中,每次要更新共享资源的代码处时设置一个判断flag的条件语句,只有当flag满足特定条件,才能让相应的线程进行更新共享资源。
    • 互斥量/锁:
      • 初始化锁(因为互斥锁是pthread库中的一个数据类型,得要初始化,当然也涉及到销毁)
      • 上锁
      • 访问共享内存
      • 解锁
      • 销毁锁
  4. 忙等待 vs 互斥锁:忙等待因为要频繁地执行判断语句,所以效率低。最好使用互斥锁

  5. 在使用互斥锁的时候也尽量避免频繁上锁,解锁操作,这样会印象性能。尽量每个线程只执行一次(这不是绝对,看具体执行什么操作)

  6. 这里也只是讨论了每个线程执行结果没有逻辑上的先后顺序,就像有理数的乘法交换律一样,不管什么顺序乘,结果都一样。有先后顺序的情况将在下一篇文章讨论,就如同矩阵乘法,顺序很重要!

参考

  1. 【团日活动】C++实现高性能并行计算——⑨pthreads并行编程

这篇关于C/C++实现高性能并行计算——1.pthreads并行编程(中)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/941930

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形