人工智能|推荐系统——推荐大模型最新进展

2024-04-28 00:20

本文主要是介绍人工智能|推荐系统——推荐大模型最新进展,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近年来,大语言模型的兴起为推荐系统的发展带来了新的机遇。这些模型以其强大的自然语言处理能力和丰富的知识表示,为理解和生成复杂的用户-物品交互提供了新的视角。本篇文章介绍了当前利用大型语言模型进行推荐系统研究的几个关键方向,包括嵌入空间的解释性、个性化推荐的知识对齐、端到端推荐框架的构建,以及基于GPT训练范式的顺序推荐模型等。这些研究不仅推动了推荐系统在技术上的创新,也为理解和改进推荐系统提供了新的理论和实践基础。

LLMRec相关

一、研究1

1.1 论文题目

Demystifying Embedding Spaces Using Large Language Models

1.2 摘要

Embedding 已成为表示关于实体、概念和关联的复杂的信息的关键手段,并以简洁且有用的格式呈现。然而,它们通常难以直接进行解释。尽管下游任务利用这些压缩表示,但要进行有意义的解释通常需要使用降维或专门的机器学习可解释性方法进行可视化。本文解决了使这些嵌入更具解释性和广泛实用性的挑战,通过利用大语言模型(LLMs)直接与嵌入进行交互,将抽象向量转化为可理解的叙述。通过将嵌入注入LLMs,我们使复杂的嵌入数据可以进行查询和探索。我们在各种不同任务上展示了我们的方法,包括 enhancing concept activation vectors (CAVs), communicating novel embedded entities, and decoding user preferences in recommender systems。我们的工作将嵌入的巨大信息潜力与LLMs的解释能力相结合。

1.3 内容概述

物品的embedding是对于物品信息的抽象表示,例如在推荐系统领域中,物品的embeddings可能隐含着关于其质量、可用性、设计、客户满意度等复杂细节,但理解这些抽象表示仍然非常困难。这篇论文提出利用大语言模型的来帮助理解物品的embedding信息。同时作者在文中指出,利用LLMs来进行embedding解释,可以描述embedding space中的一些特定点,即使这些特定点可能并不对应真实物品。例如图2所示,LLMs可以完成为embedding space中一些虚构点提供描述、观看理由等任务。具体而言,该论文提出了一种名为ELM(Embedding Language Model)的框架,利用大型语言模型(LLMs)解释领域嵌入,使用训练好的adapter将领域嵌入向量整合到LLM的Token embedding space中。开发了一种训练方法,用于微调预训练的LLMs以解释领域嵌入。

1.4 推荐理由

该文章提供了一个清晰直观的框架,利用大语言模型强大的能力来提供对物品embedding space的解释。这种想法是比较有启发性的,例如在一些生成式推荐框架中,很多时候并不直接生成推荐结果,那么在映射到真实物品空间中之前,也可以考虑使用这样的embedding解释技术来对生成结果进行分析。同时文中生成对embedding的解释也包含多个方面,例如推荐/不推荐理由、可能喜欢该物品的用户群体、物品描述等,也有助于该工作应用在不同的推荐场景下。值得一提的是,该工作的部分训练数据也是由LLMs生成的,这一方面降低了模型的数据收集成本,但另一方面这可能也让人对该模型在真实场景下的能力抱有疑问。总而言之,该工作为如何利用LLMs来理解embedding空间提供了新的思路。

二、研究2

2.1 论文题目

Exact and Efficient Unlearning for Large Language Model-based Recommendation

2.2 摘要

大型语言模型推荐(LLMRec)的不断发展通过使用推荐数据对大型语言模型(LLMs)进行参数高效微调(PEFT)来实现定制化。然而,将用户数据纳入LLMs会引发隐私问题,因此需要有效的遗忘过程来从已建立的LLMRec模型中删除无用数据(例如历史行为)。现有的遗忘方法对LLMRec来说不够有效,主要是因为计算成本高或无法完全擦除数据。在本研究中,我们介绍了适配

这篇关于人工智能|推荐系统——推荐大模型最新进展的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/941889

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、