时序分解 | Matlab实现RLMD鲁棒性局部均值分解

2024-04-27 16:12

本文主要是介绍时序分解 | Matlab实现RLMD鲁棒性局部均值分解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时序分解 | Matlab实现RLMD鲁棒性局部均值分解

目录

    • 时序分解 | Matlab实现RLMD鲁棒性局部均值分解
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

基本介绍

Matlab实现RLMD鲁棒性局部均值分解,可直接替换 Matlab语言
1.算法新颖小众,用的人很少,包含分解图
2.直接替换数据即可用 适合新手小白 注释清晰~
3.附赠excel测试数据 直接运行main一键出图~

鲁棒性局部均值分解(Robust Locally Mean Decomposition,简称RLMD)是一种信号处理方法,用于对复杂信号进行分解和分析。它是局部均值分解(Locally Mean Decomposition,简称LMD)的改进版本,旨在提高对噪声和干扰的鲁棒性。

局部均值分解是一种将信号分解为局部平稳信号和调制信号的技术。它通过对信号进行迭代滤波和振幅调整来实现分解。然而,传统的局部均值分解对于存在噪声和干扰的信号可能会产生较差的分解结果。

RLMD的主要目标是提高对噪声和干扰的抵抗力。它在局部均值分解的基础上引入了鲁棒性因子,通过自适应调整滤波器的参数来减小噪声和干扰对分解结果的影响。这种方法可以提高信号分解的准确性和稳定性,使得分解结果更加可靠。

程序设计

  • 完整源码和数据获取方式资源处下载Matlab实现RLMD鲁棒性局部均值分解。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
function [pfs, ams, fms, ort, fvs, iterNum] = lmd_public(x,varargin)
switch ma_iter_mode  case 'fixed' % stick stepcntr = 0; % count times of moving averagemax_c = ceil(smax/span)*15; % theoretic%         max_c = ceil(smax/(span-1));%         nm = length(x);k = (span+1)/2;kmax = nm - (span-1)/2;while (k < kmax) && (cntr < max_c) % find flat stepif x(k) == x(k+1);x = smooth(x, span);cntr = cntr+1;k = k-1;endk = k+1;end%         while ~isempty(find(diff(x)==0)) && (cntr < max_c)% %             find(diff(x)==0)%             x = smooth(x, span);%             cntr = cntr+1;%         endotherwiseerror('No specifications for ma_iter_mode.');end
end% Extend original data to refrain end effect
% ** Modified on emd by G.Rilling and P.Flandrin
% ** http://perso.ens-lyon.fr/patrick.flandrin/emd.html
function [ext_indmin, ext_indmax, ext_x, cut_index] = extend(x, indmin,...indmax, extd_r)
if extd_r == 0 % do not extend xext_indmin = indmin;ext_indmax = indmax;ext_x = x;cut_index = [1,length(x)];return
end
nbsym = ceil(extd_r*length(indmax)); % number of extrema in extending endif x(1) < x(indmax(1)) % first point < first maximumlmax = fliplr(indmax(1:min(end,nbsym)));lmin = fliplr(indmin(2:min(end,nbsym+1)));lsym = indmin(1);else                   % first point > first minimumlmax = [fliplr(indmax(1:min(end,nbsym-1))),1];lmin = fliplr(indmin(1:min(end,nbsym)));lsym = 1;end
end% right end extension
if indmax(end) < indmin(end) % last extremum is minimumif x(end) < x(indmax(end)) % last point < last maximumrmax = fliplr(indmax(max(end-nbsym+1,1):end));rmin = fliplr(indmin(max(end-nbsym,1):end-1));rsym = indmin(end);else                       % last point > last maximumrmax = [xlen, fliplr(indmax(max(end-nbsym+2,1):end))];rmin = fliplr(indmin(max(end-nbsym+1,1):end));rsym = xlen;end
else                         % last extremum is maximumif x(end) > x(indmin(end)) % last point > last minimumrmax = fliplr(indmax(max(end-nbsym,1):end-1));rmin = fliplr(indmin(max(end-nbsym+1,1):end));rsym = indmax(end);else                       % last point < last minimumrmax = fliplr(indmax(max(end-nbsym+1,1):end));rmin = [xlen, fliplr(indmin(max(end-nbsym+2,1):end))];rsym = xlen;end
end% when two or more successive points have the same value we consider only
% one extremum in the middle of the constant area (only works if the signal
% is uniformly sampled)if any(d==0)imax = [];imin = [];bad = (d==0);dd = diff([0 bad 0]);debs = find(dd == 1);fins = find(dd == -1);if debs(1) == 1if length(debs) > 1debs = debs(2:end);fins = fins(2:end);elsedebs = [];fins = [];endendif ~isempty(debs)if fins(end) == mif length(debs) > 1debs = debs(1:(end-1));fins = fins(1:(end-1));elsedebs = [];fins = [];endendendlc = length(debs);if lc > 0for k = 1:lcif d(debs(k)-1) > 0if d(fins(k)) < 0%           imax = [imax round((fins(k)+debs(k))/2)];endelseif d(fins(k)) > 0%           imin = [imin round((fins(k)+debs(k))/2)];endendendendif ~isempty(imax)indmax = sort([indmax imax]);endif ~isempty(imin)indmin = sort([indmin imin]);endend
end% Compute the index of orthogonality
% ** Copied from emd toolbox by G.Rilling and P.Flandrin
% ** http://perso.ens-lyon.fr/patrick.flandrin/emd.html
function ort = io(x,pfs)
% ort = IO(x,pfs) computes the index of orthogonality
%
% inputs : - x   : analyzed signal
%          - pfs  : production functionn = size(pfs,1);s = 0;for i = 1:nfor j =1:nif i~=js = s + abs(sum(pfs(i,:).*conj(pfs(j,:)))/sum(x.^2));endend
endort = 0.5*s;
end% Plot PF, Amplititude Signal and FM Signal
function lmdplot(pfs, ams, fms, smooth_mode)
t = 1:size(pfs,2);
pfn = size(pfs,1);
figure
for pfi = 1:pfnsubplot(pfn,1,pfi);plot(t,pfs(pfi,:));if pfi < pfntitle(['PF',num2str(pfi),' (',smooth_mode,')']);elsetitle(['Residual',' (',smooth_mode,')']);end
end
figure
for ai = 1:pfn-1subplot(pfn-1,1,ai);plot(t,ams(ai,:));title(['Amplititude Signal',num2str(ai),' (',smooth_mode,')']);
end
figure
for fsi = 1:pfn-1subplot(pfn-1,1,fsi);plot(t,fms(fsi,:));title(['FM Signal',num2str(fsi),' (',smooth_mode,')']);
endend

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

这篇关于时序分解 | Matlab实现RLMD鲁棒性局部均值分解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/940952

相关文章

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

将Java程序打包成EXE文件的实现方式

《将Java程序打包成EXE文件的实现方式》:本文主要介绍将Java程序打包成EXE文件的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录如何将Java程序编程打包成EXE文件1.准备Java程序2.生成JAR包3.选择并安装打包工具4.配置Launch4