Rust异步并发编程tokio异步运行时讲解和使用,新手必学

2024-04-27 12:20

本文主要是介绍Rust异步并发编程tokio异步运行时讲解和使用,新手必学,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Rust 在v1.39版本以后就引入了async关键字,用于支持异步编程。

async fn foo() {}

Rust中,async函数或块会被视作一个 Future 对象,async 关键字只是用来定义这个 Future 对象,定义好的这片异步代码并不会自动执行,而是需要和 async 配对的 .await 去驱动它才会执行。

用 async 定义异步代码,用 .await 驱动执行。

但是 .await 又只能在 async 块中调用。

Rust 明确规定了,main 函数前不能加 async 修饰。也就是说,只能写成这种形式。

fn main() {let a = async {};a.await;
}

但是前面又说过了,.await 只能写在 async 代码块或函数里。这里就需要引入异步运行时了。

异步运行时

异步运行时是一个库,这个库包含一个响应器(reactor)和一个或多个执行器(executor)。它需要处理下面的事:

异步代码的执行;

任务的暂停;

状态的缓存;

外部事件的监听注册;

外部信号来了后,唤醒对应的任务,恢复任务状态;

多个任务间的调度。 

tokio第三方实现库

目前 Rust 标准库中还没有内置一个官方的异步 Runtime,tokio 在第三方异步 Runtime 的激烈竞争中胜出,可以说它现在已经成为了 Rust 生态中异步运行时事实上的标准。

1.引入依赖

在Cargo.toml中引入依赖

tokio = { version = "1", features = ["full"] }

2. main 函数

tokio提供的一个属性宏标注在main函数上面,这样main函数前就可以加async修饰了。解决了上面提到的问题。

#[tokio::main]      // 这个是tokio库里面提供的一个属性宏标注
async fn main() {   // 注意 main 函数前面有 async println!("Hello world");
}

tokio 还可以基于当前系统线程创建单线程的 Runtime,你可以看一下示例。

#[tokio::main(flavor = "current_thread")]  // 属性标注里面配置参数
async fn main() {println!("Hello world");
}

3. tokio组件

tokio 发展到现在,已经是一个功能丰富、机制完善的 Runtime 框架了。它针对异步场景把 Rust 标准库里对应的类型和设施都重新实现了一遍。具体包含 6 个部分。

  • Runtime 设施组件:你可以自由地配置创建基于系统单线程的 Runtime 和多线程的 Runtime。
  • 轻量级任务 task:你可以把它理解成类似 Go 语言中的 Goroutine 这种轻量级线程,而不是操作系统层面的线程。
  • 异步输入输出(I/O):网络模块 net、文件操作模块 fs、signal 模块、process 模块等。
  • 时间模块:定时器 Interval 等。
  • 异步场景下的同步原语:channel、Mutex 锁等等。
  • 在异步环境下执行计算密集型任务的方案spawn_blocking等等。

4. tokio的一些知识

1) tokio 底层机制

tokio reactor:用来接收从操作系统的异步框架中传回的消息事件,然后通知tokio waker把对应的任务唤醒。

tokio waker:唤醒对应任务。

tokio executor: 执行对应唤醒任务。每个任务会被抽象成一个Future来独立处理,而每个Future在Rust中会被处理成一个结构体,用状态机的方式来管理。Tokio 中还实现了对这些任务的安排调度机制。

2) 轻量级线程

tokio 提供了一种合作式(而非抢占式)的任务模型:每个任务 task 都可以看作是一个轻量级的线程,与操作系统线程相对。操作系统默认的线程机制需要消耗比较多的资源,一台普通服务器上能启动的总线程数一般最多也就几千个。而 tokio 的轻量级线程可以在一台普通服务器上创建上百万个。

3))M:N模型

tokio 的这个模型是一种 M:N 模型,M 表示轻量级线程的数量,N 表示操作系统线程的数量。N最常用的默认配置是一个机器上有多少CPU逻辑处理核,N就等于多少。

4) 合作式

tokio 的轻量级线程之间的关系是一种合作式的。合作式的意思就是同一个 CPU 核上的任务大家是配合着执行(不同 CPU 核上的任务是并行执行的)。我们可以设想一个简单的场景,A 和 B 两个任务被分配到了同一个 CPU 核上,A 先执行,那么,只有在 A 异步代码中碰到 .await 而且不能立即得到返回值的时候,才会触发挂起,进而切换到任务 B 执行。也就是说,在一个 task 没有遇到 .await 之前,它是不会主动交出这个 CPU 核的,其他 task 也不能主动来抢占这个 CPU 核。

5)创建tokio task

创建 tokio task,这需要使用 task::spawn() 函数。

use tokio::task;#[tokio::main]
async fn main() {task::spawn(async {// 在这里执行异步任务});
}

在这个示例里,main 函数里面创建了一个新的 task,用来执行具体的任务。我们需要知道,tokio 管理下的 async fn main() {} 本身就是一个 task,相当于在 main task 中,创建了一个新的 task 来执行。这里,main task 就是父 task,新创建的这个 task 是子 task。

在 tokio 中,子 task 的生存期有可能超过父 task 的生存期,也就是父 task 执行结束了,但子 task 还在执行。如果在父 task 里要等待子 task 执行完,再结束自己,保险的做法是用 JoinHandler。

注意:如果 main 函数所在的 task 先结束了,会导致整个程序进程退出,有可能会强制杀掉那些新创建的子 task。

JoinHandler 是什么意思呢?这个新概念跟 task 的管理相关。我们在 main task 中里创建一个新 task 后,task::spawn() 函数实际有一个返回值,它返回一个 handler,这个 handler 可以让我们在 main task 里管理新创建的 task。这个 handler 也可以用来指代这个新的 task,相当于给这个 task 取了一个名字。比如示例里,我们就把这个新的任务命名为 task_a,它的类型是 JoinHandler。在用 spawn() 创建 task_a 后,这个新任务就立即执行。

有了 JoinHandler,我们可以方便地创建一批新任务,并等待它们的返回值。

use tokio::task;async fn my_background_op(id: i32) -> String {let s = format!("Starting background task {}.", id);println!("{}", s);s
}#[tokio::main]
async fn main() {let ops = vec![1, 2, 3];let mut tasks = Vec::with_capacity(ops.len());for op in ops.clone() {// 任务创建后,立即开始运行,我们用一个Vec来持有各个任务的handlertasks.push(tokio::spawn(my_background_op(op)));}let mut outputs = Vec::with_capacity(tasks.len());for task in tasks {outputs.push(task.await.unwrap());}println!("{:?}", outputs);
}
// 输出
Starting background task 1.
Starting background task 2.
Starting background task 3.

上面示例里,我们用 tasks 这个动态数组持有 3 个异步任务的 handler,它们是并发执行的。然后对 tasks 进行迭代,等待每个 task 执行完成,并且搜集任务的结果放到 outputs 动态数组里。最后打印出来。 

这篇关于Rust异步并发编程tokio异步运行时讲解和使用,新手必学的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/940492

相关文章

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景