【智能算法】囊状虫群算法(TSA)原理及实现

2024-04-27 08:44

本文主要是介绍【智能算法】囊状虫群算法(TSA)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2020年,S Kaur等人受到囊状虫群自然行为启发,提出了囊状虫群算法(Tunicate Swarm Algorithm, TSA)。

在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

TSA模拟了囊状虫群在导航和觅食过程中的喷射推进和群体行为,群体行为会更新其他搜索代理关于最优解的位置。

在这里插入图片描述

2.2算法过程

冲突避免

为了避免个体之间的冲突,A 表示计算新的个体位置:
A ⃗ = G ⃗ M ⃗ G ⃗ = c 2 + c 3 − F ⃗ F ⃗ = 2 ⋅ c 1 (1) \begin{aligned}&\vec{A}=\frac{\vec{G}}{\vec{M}}\\&\vec{G}=c_{2}+c_{3}-\vec{F}\\&\vec{F}=2\cdot c_{1}\end{aligned}\tag{1} A =M G G =c2+c3F F =2c1(1)

其中,G代表重力,F代表洋流驱动力,M代表个体间相互作用力:
M ⃗ = [ P m i n + c 1 ⋅ P m a x − P m i n ] (2) \vec{M}=\begin{bmatrix}P_{min}+c_1\cdot P_{max}-P_{min}\end{bmatrix}\tag{2} M =[Pmin+c1PmaxPmin](2)

向最优领域个体移动

P D ⃗ = ∣ F S ⃗ − r a n d ⋅ P p ( x ) ⃗ ∣ (3) \vec{PD}=\mid\vec{FS}-r_{and}\cdot\vec{P_{p}(x)}\mid \tag{3} PD =∣FS randPp(x) (3)
其中,FS代表食物位置(最优适应度)。

位置收敛

囊状虫群个体向最优个体收敛:
P p ( x ) ⃗ = { F S ⃗ + A ⃗ ⋅ P D ⃗ , if r a n d ≥ 0.5 F S ⃗ − A ⃗ ⋅ P D ⃗ , if r a n d < 0.5 (4) \vec{P_p(x)}=\begin{cases} \vec{FS}+\vec{A}\cdot\vec{PD},&\text{if}r_{and}\geq0.5\\ \vec{FS}-\vec{A}\cdot\vec{PD},&\text{if}r_{and}<0.5\end{cases}\tag{4} Pp(x) ={FS +A PD ,FS A PD ,ifrand0.5ifrand<0.5(4)

种群行为

模拟囊状虫群体行为,保存前两个最优解,并根据最优个体位置更新其他搜索个体的位置:
P p ( x + 1 ⃗ ) = P p ( x ) ⃗ + P p ( x + 1 ⃗ ) 2 + c 1 (5) P_{p}(\vec{x+1})=\frac{\vec{P_{p}(x)}+P_{p}(\vec{x+1})}{2+c_{1}}\tag{5} Pp(x+1 )=2+c1Pp(x) +Pp(x+1 )(5)
在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

使用测试框架,测试TSA性能 一键run.m

  • 【智能算法】省时方便,智能算法统计指标——一键运行~

CEC2017-F14

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Kaur S, Awasthi L K, Sangal A L, et al. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization[J]. Engineering Applications of Artificial Intelligence, 2020, 90: 103541.

这篇关于【智能算法】囊状虫群算法(TSA)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/940033

相关文章

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

C#实现将Excel表格转换为图片(JPG/ PNG)

《C#实现将Excel表格转换为图片(JPG/PNG)》Excel表格可能会因为不同设备或字体缺失等问题,导致格式错乱或数据显示异常,转换为图片后,能确保数据的排版等保持一致,下面我们看看如何使用C... 目录通过C# 转换Excel工作表到图片通过C# 转换指定单元格区域到图片知识扩展C# 将 Excel

基于Java实现回调监听工具类

《基于Java实现回调监听工具类》这篇文章主要为大家详细介绍了如何基于Java实现一个回调监听工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录监听接口类 Listenable实际用法打印结果首先,会用到 函数式接口 Consumer, 通过这个可以解耦回调方法,下面先写一个

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Qt中QGroupBox控件的实现

《Qt中QGroupBox控件的实现》QGroupBox是Qt框架中一个非常有用的控件,它主要用于组织和管理一组相关的控件,本文主要介绍了Qt中QGroupBox控件的实现,具有一定的参考价值,感兴趣... 目录引言一、基本属性二、常用方法2.1 构造函数 2.2 设置标题2.3 设置复选框模式2.4 是否

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法

《springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法》:本文主要介绍springboot整合阿里云百炼DeepSeek实现sse流式打印,本文给大家介绍的非常详细,对大... 目录1.开通阿里云百炼,获取到key2.新建SpringBoot项目3.工具类4.启动类5.测试类6.测

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三