18、BDS B1I信号捕获和跟踪实现

2024-04-27 04:48

本文主要是介绍18、BDS B1I信号捕获和跟踪实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

\qquad 下面是HD-GR GNSS导航软件的BDS B1I信号捕获和跟踪实现代码,入口函数b1i_track_channels(…):

// b1i_accum_task.c -- BDS B1I signal carrier and code tracking./* * Copyright (C) 2005 Andrew Greenberg* Distributed under the GNU GENERAL PUBLIC LICENSE (GPL) Version 2 (June 1991).* See the "COPYING" file distributed with this software for more information.*//* Namuru GPS OpenSource receiver project* Original : tracking.c* Modes    : Some code has been modified for adaption to the Namuru HW by Peter Mumford* *    In general, the original code has been commented out and*    replaced (with peters initials (pjm) on the new code lines).*    The Namuru HW is different from the GP4020 / 2021 in the following points:*    1) early, prompt and late correlators, each separated by 0.5 chips* * version  : V1.0* date     : 21st/Dec/2006*//* * HD-GR GNSS receiver project* Modes    : Inherited the code of tracking.c in the Namuru GPS receiver project *            V1.0 and made necessary adjustments to adapt to the new HW, RTOS and *            functions.* version  : V1.0* date     : xx/xx/2015*/#include <io.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "includes.h"
#include "system.h"
#include "altera_avalon_pio_regs.h"
#include "alt_types.h"
#include "sys/alt_irq.h"
#include "main_allocate.h"
#include "b1i_accum_task.h"
#include "b1i_message.h"/******************************************************************************** #defines******************************************************************************/// m_B1I_CH[ch].ef_out = m_B1I_CH[ch].ef_out/(2*PI_SHIFT14*T), T=0.02 s
// m_B1I_CH[ch].ef_out = m_B1I_CH[ch].ef_out/((20-2)*B1I_CARR_FREQ_RES)
#define B1I_PULLIN_EFOUT_COF	(int)(0.5+0.72*PI_SHIFT14*B1I_CARR_FREQ_RES)/******************************************************************************** Global variables******************************************************************************/
b1i_chan_t m_B1I_CH[B1I_MAX_CHANNELS] __attribute__ ((section(".isrdata.rwdata")));unsigned short m_D1SecCode[20] __attribute__ ((section(".isrdata.rwdata"))) ={0,0,0,0,0,1,0,0,1,1,0,1,0,1,0,0,1,1,1,0};//
// ACCUM
///******************************************************************************** Static (module level) variables******************************************************************************/short m_B1iCarrSrchStep __attribute__ ((section(".isrdata.rwdata")));					// carry search step length
static unsigned short B1iCarrSrchWidth __attribute__ ((section(".isrdata.rwdata")));	// carry search widthstatic short B1iPullInTime __attribute__ ((section(".isrdata.rwdata")));
static short B1iPhaseTest __attribute__ ((section(".isrdata.rwdata")));/******************************************************************************** 以下环路滤波参数未初始化。引用该源文件代码可在此将它们初始化为适合目标基带模块参数的值。例如:* static long B1i_Pull_Carr_C0 __attribute__ ((section(".isrdata.rwdata"))) = 910;* * date: 17st/Sep/2021
******************************************************************************/
static long  B1i_Pull_Code_TtwoTone __attribute__ ((section(".isrdata.rwdata")));
static long  B1i_Pull_Code_DtTone __attribute__ ((section(".isrdata.rwdata")));
static long  D1_Lock_Code_TtwoTone __attribute__ ((section(".isrdata.rwdata")));
static long  D1_Lock_Code_DtTone __attribute__ ((section(".isrdata.rwdata")));
static long  D2_Lock_Code_TtwoTone __attribute__ ((section(".isrdata.rwdata")));
static long  D2_Lock_Code_DtTone __attribute__ ((section(".isrdata.rwdata")));
static long  B1i_Pull_Carr_C0 __attribute__ ((section(".isrdata.rwdata")));
static long  B1i_Pull_Carr_C1 __attribute__ ((section(".isrdata.rwdata")));
static long  B1i_Pull_Carr_C2 __attribute__ ((section(".isrdata.rwdata")));
static long  B1i_Lock_Carr_C0 __attribute__ ((section(".isrdata.rwdata")));
static long  B1i_Lock_Carr_C1 __attribute__ ((section(".isrdata.rwdata")));
static long  B1i_Lock_Carr_C2 __attribute__ ((section(".isrdata.rwdata")));/******************************************************************************** Prototypes (Local visible functions)******************************************************************************/static void b1i_backto_acquire( unsigned short ch) __attribute__ ((section(".isrcode.txt")));
static void b1i_enter_pull_in( unsigned short ch) __attribute__ ((section(".isrcode.txt")));
static void b1i_check_signal( unsigned short ch) __attribute__ ((section(".isrcode.txt")));
static void b1i_dll( unsigned short ch, long dcode_freq, long TtwoTone, long DtTone) __attribute__ ((section(".isrcode.txt")));
static void b1i_pll1( unsigned short ch, long dcarr_phase, long dcarr_freq, long c0, long c1, long c2) __attribute__ ((section(".isrcode.txt")));
static void b1i_acquire( unsigned short ch) __attribute__ ((section(".isrcode.txt")));
static void b1i_confirm( unsigned short ch) __attribute__ ((section(".isrcode.txt")));
static void b1i_freq_pull( unsigned short ch) __attribute__ ((section(".isrcode.txt")));
static void b1i_pull_in( unsigned short ch) __attribute__ ((section(".isrcode.txt")));
static void b1i_lock( unsigned short ch) __attribute__ ((section(".isrcode.txt")));#ifdef B1I_FALSE_PHASE_LOCK_DETECTOR
static short b1i_cd1sec_FPLD(unsigned short ch) __attribute__ ((section(".isrcode.txt")));
#endif // B1I_FALSE_PHASE_LOCK_DETECTOR/******************************************************************************** Write 32 bits to the code DCO rate and carrier DCO rate registers** Modified by Peter Mumford for namuru HW (2006)* Modified by Cheng Huaide for HD-GR GNSS (2015)******************************************************************************/inline void b1i_set_code_dco_rate( unsigned short ch, unsigned long freq)
{write_to_correlator( (B1I_CH00_BASE + ch * CH_BASE_STEP + CODE_NCO), freq );
}inline void b1i_set_carrier_dco_rate( unsigned short ch, unsigned long freq)
{write_to_correlator( (B1I_CH00_BASE + ch * CH_BASE_STEP + CARRIER_NCO), freq );
}/** False Phase Lock Detector (FPLD)
*/#ifdef B1I_FALSE_PHASE_LOCK_DETECTOR// FPLD defines
#define FPLD_G_THRESHOLD		(PI_SHIFT14 / 12)	// 15 deg.static short b1i_cd1sec_FPLD(unsigned short ch)
{signed long i_now = m_B1I_CH[ch].i_p_20 >> 4;signed long q_now = m_B1I_CH[ch].q_p_20 >> 4;signed long i_old = m_B1I_CH[ch].i_p_20_1 >> 4;signed long q_old = m_B1I_CH[ch].q_p_20_1 >> 4;signed long C = i_old*q_now - q_old*i_now;signed long D = i_old*i_now + q_old*q_now;if (m_B1I_CH[ch].cnt_fpld == 0) {m_B1I_CH[ch].c_fpld = 0;m_B1I_CH[ch].d_fpld = 0;}m_B1I_CH[ch].cnt_fpld ++;m_B1I_CH[ch].c_fpld += (C - m_B1I_CH[ch].c_fpld)/m_B1I_CH[ch].cnt_fpld;m_B1I_CH[ch].d_fpld += (D - m_B1I_CH[ch].d_fpld)/m_B1I_CH[ch].cnt_fpld;if (m_B1I_CH[ch].cnt_fpld == 50) {m_B1I_CH[ch].cnt_fpld = 0;C = fix_atan2(m_B1I_CH[ch].c_fpld, m_B1I_CH[ch].d_fpld);if (labs(C) > FPLD_G_THRESHOLD) {return C;}}return 0;
}#endif // B1I_FALSE_PHASE_LOCK_DETECTOR/******************************************************************************* Need to set up m_B1I_CH[] structure and initialize the loop dynamic parameters.******************************************************************************/
void b1i_initialize_tracking( void)
{unsigned short ch;// Why are these a good choices?B1iCarrSrchWidth = 40;    // search 20 frequency steps on either sidem_B1iCarrSrchStep = (short)(400./B1I_CARR_FREQ_RES); // 400Hz (CHD)B1iPullInTime = 1000;		// 1 secondB1iPhaseTest  = 500;		// last 1/2 second of pull in, start phase testfor (ch = 0; ch < B1I_MAX_CHANNELS; ch++) {m_B1I_CH[ch].state = CHANNEL_OFF;}
}static void b1i_backto_acquire( unsigned short ch)
{m_B1I_CH[ch].state = CHANNEL_ACQUISITION;// flag the message_thread that the past subframes are no longer validb1i_clear_messages(ch);m_B1I_CH[ch].codes = 0;m_B1I_CH[ch].code_freq = B1I_CODE_REF;b1i_set_code_dco_rate(ch, m_B1I_CH[ch].code_freq);// Clear sync flagsm_B1I_CH[ch].bit_sync = 0;
}void b1i_enter_pull_in( unsigned short ch)
{m_B1I_CH[ch].state = CHANNEL_PULL_IN;m_B1I_CH[ch].ch_time = 0;m_B1I_CH[ch].th_rms = 0;m_B1I_CH[ch].bit_sync = 0;m_B1I_CH[ch].dcode_freq_1 = 0;m_B1I_CH[ch].dcarr_phase_1 = 0;m_B1I_CH[ch].dcarr_phase_2 = 0;// Some garbage datam_B1I_CH[ch].ms_sign = 0x12345;m_B1I_CH[ch].ms_count = 0;m_B1I_CH[ch].ms_count_20 = 0;m_B1I_CH[ch].tang = 0;
}static void b1i_check_signal( unsigned short ch)
{// Amplitude Tang decider, exit if the amplitude is always small.if (m_B1I_CH[ch].p_mag<TANG_THRESHOLD) {m_B1I_CH[ch].tang-=3;}else if (m_B1I_CH[ch].tang<90) {m_B1I_CH[ch].tang+=1;}if (m_B1I_CH[ch].tang<-30) {b1i_backto_acquire(ch);}
}static void b1i_dll( unsigned short ch, long dcode_freq, long TtwoTone, long DtTone)
{long ddf = (dcode_freq - m_B1I_CH[ch].dcode_freq_1) * TtwoTone;m_B1I_CH[ch].code_freq += (dcode_freq * DtTone + ddf) >> 14;b1i_set_code_dco_rate( ch, m_B1I_CH[ch].code_freq);m_B1I_CH[ch].dcode_freq_1 = dcode_freq;
}static void b1i_pll1( unsigned short ch, long dcarr_phase, long dcarr_freq, long c0, long c1, long c2)
{long ddcar = dcarr_phase*c0 + m_B1I_CH[ch].dcarr_phase_1*c1 + dcarr_freq*c2;m_B1I_CH[ch].carrier_freq += ddcar >> 14;b1i_set_carrier_dco_rate( ch, m_B1I_CH[ch].carrier_freq);m_B1I_CH[ch].dcarr_phase_1 = dcarr_phase;
}/******************************************************************************FUNCTION b1i_acquire( unsigned short ch)RETURNS  None.PARAMETERSch  char // Which correlator channel to usePURPOSE  to perform initial b1i_acquire by searching code and frequency spacelooking for a high correlationOriginal function : acquireWRITTEN BYClifford KelleyModified by Peter Mumford for namuru HW (2006)Modified by Cheng Huaide for HD-GR GNSS (2015)******************************************************************************/
static void b1i_acquire( unsigned short ch)
{// Search carrier frequency binsif (abs(m_B1I_CH[ch].n_freq) <= B1iCarrSrchWidth) {long power;power = m_B1I_CH[ch].e_mag + m_B1I_CH[ch].p_mag + m_B1I_CH[ch].l_mag;if (power > ACQ_THRESHOLD) {m_B1I_CH[ch].state = CHANNEL_CONFIRM;m_B1I_CH[ch].n_confirm = 0;m_B1I_CH[ch].m_thresh = 0;return;}// No satellite yet; try delaying the code DCO 1/2 chip// accumulators[ch].write.code_slew_counter = 1;write_to_correlator(B1I_CH00_BASE + ch * CH_BASE_STEP + CODE_SLEW, 1);// Keep count of how many code phases we've searchedm_B1I_CH[ch].codes++;// if (m_B1I_CH[ch].codes > 2044) // PRN code length in 1/2 chips// All code offsets have been searched; try another frequency binif (m_B1I_CH[ch].codes > 4091) {// reset code phase countm_B1I_CH[ch].codes = 0;// Move to another frequency bin// Note the use of carrier_corr, this is meant to be a correction// for estimated TCXO frequency error, currently set to zero.// See the comment in cold_allocate_channel()// Generate a search sequence: 0, 1, -1, 2, -2, ...// This can be re-written to avoid the multiply.if (m_B1I_CH[ch].n_freq & 1) { // Odd search bins map to the "right"m_B1I_CH[ch].carrier_freq = B1I_CARRIER_REF + m_B1I_CH[ch].carrier_corr +m_B1iCarrSrchStep * (1 + (m_B1I_CH[ch].n_freq >> 1));}else { // Even search bins are to the "left" of B1I_CARRIER_REFm_B1I_CH[ch].carrier_freq = B1I_CARRIER_REF + m_B1I_CH[ch].carrier_corr -m_B1iCarrSrchStep * (m_B1I_CH[ch].n_freq >> 1);}// Set carrier DCOb1i_set_carrier_dco_rate(ch, m_B1I_CH[ch].carrier_freq);m_B1I_CH[ch].n_freq++; // next time try the next search bin}}else {// End of frequency search: release the channel. A mainline thread will// eventually allocate  another satellite PRN to this channelm_B1I_CH[ch].state = CHANNEL_OFF;}
}/*******************************************************************************FUNCTION b1i_confirm(unsigned short ch)RETURNS  None.PARAMETERSch  char  channel numberPURPOSE  to b1i_lock the presence of a high correlation peak using an n of malgorithmOriginal function : confirmWRITTEN BYClifford KelleyModified by Peter Mumford for namuru HW (2006)Modified by Cheng Huaide for HD-GR GNSS (2015)
*******************************************************************************/
static void b1i_confirm( unsigned short ch)
{long power;// count number of b1i_confirm attemptsm_B1I_CH[ch].n_confirm++;power = m_B1I_CH[ch].e_mag + m_B1I_CH[ch].p_mag + m_B1I_CH[ch].l_mag;if (power > ACQ_THRESHOLD) {// count number of good hitsm_B1I_CH[ch].m_thresh++;}// try "n" b1i_confirm attemptsif (m_B1I_CH[ch].n_confirm > 10) {// confirmed if good hits >= "m"if (m_B1I_CH[ch].m_thresh >= 8) {m_B1I_CH[ch].state = CHANNEL_FREQ_PULL;m_B1I_CH[ch].ch_time = 0;m_B1I_CH[ch].th_rms = 0;m_B1I_CH[ch].bit_sync = 0;m_B1I_CH[ch].dcode_freq_1 = 0;m_B1I_CH[ch].dcarr_phase_1 = 0;m_B1I_CH[ch].dcarr_phase_2 = 0;// Some garbage datam_B1I_CH[ch].ms_sign = 0x12345;m_B1I_CH[ch].ms_count = 0;m_B1I_CH[ch].tang = 0;m_B1I_CH[ch].ef_out = 0;m_B1I_CH[ch].ef_max = -0x7fffffff;m_B1I_CH[ch].ef_min = 0x7fffffff;}else {// Keep searching - assumes search parameters are still okm_B1I_CH[ch].state = CHANNEL_ACQUISITION;// Clear sync flagsm_B1I_CH[ch].bit_sync = 0;}}
}/*******************************************************************************FUNCTION b1i_freq_pull(unsigned short ch)RETURNS  None.PARAMETERSch  char  channel numberPURPOSE  to adjust the frequency of the acquired signal using a FLL.
*******************************************************************************/
static void b1i_freq_pull( unsigned short ch)
{b1i_check_signal(ch);if (m_B1I_CH[ch].state != CHANNEL_FREQ_PULL) {return;}// Calculate frequency errorsigned long C = m_B1I_CH[ch].i_p_1*m_B1I_CH[ch].q_p - m_B1I_CH[ch].q_p_1*m_B1I_CH[ch].i_p;signed long D = m_B1I_CH[ch].i_p_1*m_B1I_CH[ch].i_p + m_B1I_CH[ch].q_p_1*m_B1I_CH[ch].q_p;signed long df = fix_atan2(C, D);// Accumulate frequency errorm_B1I_CH[ch].ef_out += df;if (m_B1I_CH[ch].ef_max < df) m_B1I_CH[ch].ef_max = df;if (m_B1I_CH[ch].ef_min > df) m_B1I_CH[ch].ef_min = df;m_B1I_CH[ch].ms_count ++;if (m_B1I_CH[ch].ms_count == 20) {// Set carrier NCOdf = (m_B1I_CH[ch].ef_out - (m_B1I_CH[ch].ef_max + m_B1I_CH[ch].ef_min))/B1I_PULLIN_EFOUT_COF;m_B1I_CH[ch].carrier_freq += df;b1i_set_carrier_dco_rate( ch, m_B1I_CH[ch].carrier_freq);b1i_enter_pull_in(ch);}
}/*******************************************************************************FUNCTION b1i_pull_in( unsigned short ch)RETURNS  None.PARAMETERSch  char  channel numberPURPOSEpull in the frequency by trying to track the signal with acombination FLL and PLLit will attempt to track for xxx ms, the last xxx ms of data will begathered to determine if we have both code and carrier b1i_lockif so we will transition to trackOriginal function : pull_inWRITTEN BYClifford KelleyModified by Peter Mumford for namuru HW (2006)Modified by Cheng Huaide for HD-GR GNSS (2015)
*******************************************************************************/
static void b1i_pull_in( unsigned short ch)
{b1i_check_signal(ch);if (m_B1I_CH[ch].state != CHANNEL_PULL_IN) {return;}signed long C, D, M;signed long i_sum, q_sum;signed long dcode_freq, dcarr_phase, dcarr_freq;unsigned short check_bit_sync = 0;// This branch is probably almost always taken, so maybe skip the test?// If both zero the correction is not zero (2nd order) except this test// makes it so, which is a kink in the transfer function. Is this right?if ((m_B1I_CH[ch].e_mag != 0) || (m_B1I_CH[ch].l_mag != 0)) {dcode_freq = ((m_B1I_CH[ch].e_mag - m_B1I_CH[ch].l_mag)<<14) /(m_B1I_CH[ch].e_mag + m_B1I_CH[ch].l_mag);if (m_B1I_CH[ch].ch_time <= 2) {m_B1I_CH[ch].dcode_freq_1 = dcode_freq;}else {b1i_dll(ch, dcode_freq, B1i_Pull_Code_TtwoTone, B1i_Pull_Code_DtTone);}}// dcarr_phase is a measure of phase errori_sum = m_B1I_CH[ch].i_p + m_B1I_CH[ch].i_e + m_B1I_CH[ch].i_l;q_sum = m_B1I_CH[ch].q_p + m_B1I_CH[ch].q_e + m_B1I_CH[ch].q_l;if (i_sum || q_sum) {dcarr_phase = fix_atan(q_sum, i_sum);}else {dcarr_phase = m_B1I_CH[ch].dcarr_phase_1;}// Increase 1 ms epoch counter modulo 20 or 2m_B1I_CH[ch].ms_count++;if (m_B1I_CH[ch].ms_count > m_B1I_CH[ch].ms_maxval) {m_B1I_CH[ch].ms_count = 0;}m_B1I_CH[ch].ms_count_20++;if (m_B1I_CH[ch].ms_count_20 > 19) {m_B1I_CH[ch].ms_count_20 = 0;}// Check if the last 20 ms (2 ms) have the same sign and this dump// is different: if so, then we just had a bit edge transitionif (!m_B1I_CH[ch].bit_sync) {unsigned long ms_sign;unsigned short bit_sign = (i_sum < 0) ? 1:0;if (IS_D1_NAVMESSAGE(m_B1I_CH[ch].prn)) {// 剥离二次编码ms_sign = (m_B1I_CH[ch].ms_sign ^ D1_SECONDARY_CODE);// 如果符号发生变化且ms_sign的20位符号不变if ((bit_sign != (ms_sign & 1)) &&(ms_sign == 0 || ms_sign == 0xfffff)) {check_bit_sync = 1;}}else {// 如果符号发生变化if (bit_sign != (m_B1I_CH[ch].ms_sign & 1)) {// 计算差分值: 如果所有奇数位为0,则位同步ms_sign = m_B1I_CH[ch].ms_sign ^ (m_B1I_CH[ch].ms_sign << 1);if ((ms_sign & 0xaaaaa) == 0) {check_bit_sync = 1;}}}}// Shift sign buffer to leftm_B1I_CH[ch].ms_sign = ((m_B1I_CH[ch].ms_sign << 1) & 0xfffff);// Set the LSB bit if negativeif (i_sum < 0) {m_B1I_CH[ch].ms_sign |= 1;}if (check_bit_sync) {// Test if last two sums were within 1/4 radian of pi/2// 	4096 correponds to 1/4 of radian or aobut 14 degree. This is a strict//	requirement, since we could accept up to 20 degree phase error.//	20 degree corresponds to 5719if ((labs( dcarr_phase) < 5719) &&				// 4096(labs( m_B1I_CH[ch].dcarr_phase_1) < 5719)) {	// 4096// Let the world know we're synced to the satellite message bitsm_B1I_CH[ch].bit_sync = 1;// sync the ms count to the bit streamm_B1I_CH[ch].ms_count = 0;m_B1I_CH[ch].ms_count_20 = 0;// set the flag that tells tracking() to set the 1ms epoch counter// after the accumulator registers are read: this will sync the// epoch counter with the bit stream (and the ms_count, too).m_B1I_CH[ch].load_1ms_epoch_count = 1;}}// Near the end of pull in, start the phase testif (m_B1I_CH[ch].ch_time > (B1iPullInTime - B1iPhaseTest)) {m_B1I_CH[ch].th_rms += (dcarr_phase * dcarr_phase) >> 14;}// b1i_pull_in Carrier tracking loopif (m_B1I_CH[ch].ch_time <= 5) {m_B1I_CH[ch].dcarr_phase_2 = m_B1I_CH[ch].dcarr_phase_1;m_B1I_CH[ch].dcarr_phase_1 = dcarr_phase;}else {C = (m_B1I_CH[ch].i_p_1*m_B1I_CH[ch].q_p - m_B1I_CH[ch].q_p_1*m_B1I_CH[ch].i_p);D = (m_B1I_CH[ch].i_p_1*m_B1I_CH[ch].i_p + m_B1I_CH[ch].q_p_1*m_B1I_CH[ch].q_p);M = lmag(C,D);dcarr_freq = (D >= 0) ? (C<<14)/M:-(C<<14)/M;b1i_pll1(ch, dcarr_phase, dcarr_freq, B1i_Pull_Carr_C0, B1i_Pull_Carr_C1, B1i_Pull_Carr_C2);}m_B1I_CH[ch].ch_time++;// Done with pull in. Wait until the end of a data bit.// Are we sure we even think we're data-locked now?// A bit transition will happen at the next dump.if ((m_B1I_CH[ch].ms_count == m_B1I_CH[ch].ms_maxval) &&(m_B1I_CH[ch].ch_time >= B1iPullInTime)) {// Calculate the mean square value of phase error. Because of the function // fix_sqrt enlarges the root result by 2^7, so the unit of the mean square // value is still 1 radian = 16384, and the subsequent mean square error // 12000 is about 40 degrees.// m_B1I_CH[ch].th_rms = fix_sqrt( m_B1I_CH[ch].th_rms / B1iPhaseTest);// Sufficient signal, transition to tracking mode// (12000*12000 >> 14) = 8789.0625// if (m_B1I_CH[ch].bit_sync && m_B1I_CH[ch].th_rms < 12000) {if (m_B1I_CH[ch].bit_sync && m_B1I_CH[ch].th_rms < (8789*B1iPhaseTest)) {// Bit edge was detected.// Sufficient signal, transition to tracking modem_B1I_CH[ch].i_p_20 = 0;m_B1I_CH[ch].i_e_20 = 0;m_B1I_CH[ch].i_l_20 = 0;m_B1I_CH[ch].q_p_20 = 0;m_B1I_CH[ch].q_e_20 = 0;m_B1I_CH[ch].q_l_20 = 0;
#ifdef B1I_CODE_LOOP_20MS_RATE
#endif // B1I_CODE_LOOP_20MS_RATE#ifdef B1I_FALSE_PHASE_LOCK_DETECTORm_B1I_CH[ch].i_p_20_1 = 0;m_B1I_CH[ch].q_p_20_1 = 0;m_B1I_CH[ch].c_fpld = 0;m_B1I_CH[ch].d_fpld = 0;m_B1I_CH[ch].cnt_fpld = 0;m_B1I_CH[ch].tot_fpld = 0;
#endif // B1I_FALSE_PHASE_LOCK_DETECTOR// Officially switch modesm_B1I_CH[ch].state = CHANNEL_LOCK;}else {// We lost the pullin. Eventually, do a nice transition back to// b1i_confirm and/or b1i_acquire. For now, to be paranoid, just kill// the channel.b1i_backto_acquire(ch);}}
}/*******************************************************************************FUNCTION b1i_lock( unsigned short ch)RETURNS  None.PARAMETERS  char ch  , channel numberPURPOSE track carrier and code, and partially decode the navigation message(to determine TOW, subframe etc.)Original function : lockWRITTEN BYClifford Kelleyadded Carrier Aiding as suggested by Jenna Cheng, UCRModified by Peter Mumford for namuru HW (2006)Modified by Cheng Huaide for HD-GR GNSS (2015)
*******************************************************************************/
static void b1i_lock( unsigned short ch)
{b1i_check_signal(ch);if (m_B1I_CH[ch].state != CHANNEL_LOCK) {return;}signed long C, D, M;signed long i_sum, q_sum;signed long dcode_freq, dcarr_phase, dcarr_freq;unsigned short D1Msg = IS_D1_NAVMESSAGE(m_B1I_CH[ch].prn);// Check and correct ms_count_20 according to epoch_codesif (m_B1I_CH[ch].epoch_codes < m_B1I_CH[ch].ms_count_20 && m_B1I_CH[ch].ms_count_20 != 19) {m_B1I_CH[ch].ms_count_20 = 19;}else {m_B1I_CH[ch].ms_count_20 = m_B1I_CH[ch].epoch_codes;}// Increment the time, in 20ms, since the week began. Used in the measurement// thread. Also set to the true time of week when we get the TOW from a valid// subframe in the messages thread.if (m_B1I_CH[ch].ms_count_20 == 19) {m_B1I_CH[ch].time_in_bits++;if (m_B1I_CH[ch].time_in_bits >= BITS_IN_WEEK_50HZ)m_B1I_CH[ch].time_in_bits -= BITS_IN_WEEK_50HZ;}// Update ms_countm_B1I_CH[ch].ms_count = D1Msg ? (m_B1I_CH[ch].ms_count_20):(m_B1I_CH[ch].epoch_codes & 1);// Carrier loopi_sum = m_B1I_CH[ch].i_p + m_B1I_CH[ch].i_e + m_B1I_CH[ch].i_l;q_sum = m_B1I_CH[ch].q_p + m_B1I_CH[ch].q_e + m_B1I_CH[ch].q_l;if ((i_sum != 0) || (q_sum != 0)) {C = (m_B1I_CH[ch].i_p_1*m_B1I_CH[ch].q_p - m_B1I_CH[ch].q_p_1*m_B1I_CH[ch].i_p);D = (m_B1I_CH[ch].i_p_1*m_B1I_CH[ch].i_p + m_B1I_CH[ch].q_p_1*m_B1I_CH[ch].q_p);M = lmag(C,D);dcarr_freq = (D >= 0) ? (C<<14)/M:-(C<<14)/M;dcarr_phase = sgn(i_sum) * (q_sum << 14) / lmag( i_sum, q_sum);b1i_pll1(ch, dcarr_phase, dcarr_freq, B1i_Lock_Carr_C0, B1i_Lock_Carr_C1, B1i_Lock_Carr_C2);}// 20ms or 2ms accumulatorif (D1Msg && m_D1SecCode[m_B1I_CH[ch].ms_count]) {m_B1I_CH[ch].i_p_20 -= m_B1I_CH[ch].i_p;m_B1I_CH[ch].i_e_20 -= m_B1I_CH[ch].i_e;m_B1I_CH[ch].i_l_20 -= m_B1I_CH[ch].i_l;m_B1I_CH[ch].q_p_20 -= m_B1I_CH[ch].q_p;m_B1I_CH[ch].q_e_20 -= m_B1I_CH[ch].q_e;m_B1I_CH[ch].q_l_20 -= m_B1I_CH[ch].q_l;}else {m_B1I_CH[ch].i_p_20 += m_B1I_CH[ch].i_p;m_B1I_CH[ch].i_e_20 += m_B1I_CH[ch].i_e;m_B1I_CH[ch].i_l_20 += m_B1I_CH[ch].i_l;m_B1I_CH[ch].q_p_20 += m_B1I_CH[ch].q_p;m_B1I_CH[ch].q_e_20 += m_B1I_CH[ch].q_e;m_B1I_CH[ch].q_l_20 += m_B1I_CH[ch].q_l;}#ifndef B1I_CODE_LOOP_20MS_RATE// Code tracking loop @ 1ms ratedcode_freq = m_B1I_CH[ch].e_mag + m_B1I_CH[ch].l_mag;if (dcode_freq != 0) {dcode_freq = ((m_B1I_CH[ch].e_mag - m_B1I_CH[ch].l_mag)<<14)/dcode_freq;b1i_dll(ch, dcode_freq, B1i_Pull_Code_TtwoTone, B1i_Pull_Code_DtTone);}
#endif // B1I_CODE_LOOP_20MS_RATE// Code tracking loop @ 20ms rateif (m_B1I_CH[ch].ms_count == m_B1I_CH[ch].ms_maxval) {/* Deleted by CHD -- 2020.4.29if (!m_B1I_CH[ch].bit_sync) {b1i_backto_acquire(ch);return;}Deleted by CHD -- 2020.4.29 */#ifdef B1I_CODE_LOOP_20MS_RATE// Code tracking loop @ 20ms ratesigned long e_mag_20 = lmag( m_B1I_CH[ch].i_e_20, m_B1I_CH[ch].q_e_20);signed long l_mag_20 = lmag( m_B1I_CH[ch].i_l_20, m_B1I_CH[ch].q_l_20);dcode_freq = e_mag_20 + l_mag_20;if (dcode_freq != 0) {dcode_freq = ((e_mag_20 - l_mag_20) << 14)/dcode_freq;if (D1Msg) {b1i_dll(ch, dcode_freq, D1_Lock_Code_TtwoTone, D1_Lock_Code_DtTone);}else {b1i_dll(ch, dcode_freq, D2_Lock_Code_TtwoTone, D2_Lock_Code_DtTone);}}#endif // B1I_CODE_LOOP_20MS_RATE// Data bit// m_B1I_CH[ch].bit = ((m_B1I_CH[ch].i_e_20 + m_B1I_CH[ch].i_l_20 + m_B1I_CH[ch].i_p_20) > 0);if ((m_B1I_CH[ch].i_e_20 + m_B1I_CH[ch].i_l_20 + m_B1I_CH[ch].i_p_20) > 0) {g_channel_bits |= (1 << ch);}// Flag that this bit is ready to process (written to the message_flag// in the tracking() function after we've gone through all the channels
#ifdef B1I_SYNC_PROCESS_FRAME_SYNCif (m_messages[ch].frame_sync) {g_channels_with_bits |= (1 << ch);}else {//	sync_frame(ch, m_B1I_CH[ch].bit);sync_frame(ch, (g_channel_bits & (1 << ch)) ? 1:0);}
#elseg_channels_with_bits |= (1 << ch);
#endif // B1I_SYNC_PROCESS_FRAME_SYNC#ifdef B1I_FALSE_PHASE_LOCK_DETECTORif (D1Msg) {m_B1I_CH[ch].tot_fpld ++;if (m_B1I_CH[ch].tot_fpld > 50) {dcarr_phase = b1i_cd1sec_FPLD(ch);if (dcarr_phase != 0) {m_B1I_CH[ch].carrier_freq += (dcarr_phase>0) ? (25/B1I_CARR_FREQ_RES):-(25/B1I_CARR_FREQ_RES);b1i_set_carrier_dco_rate( ch, m_B1I_CH[ch].carrier_freq);}}m_B1I_CH[ch].i_p_20_1 = m_B1I_CH[ch].i_p_20;m_B1I_CH[ch].q_p_20_1 = m_B1I_CH[ch].q_p_20;}
#endif // B1I_FALSE_PHASE_LOCK_DETECTOR// Clear coherent accumulationsm_B1I_CH[ch].i_p_20 = 0;m_B1I_CH[ch].i_e_20 = 0;m_B1I_CH[ch].i_l_20 = 0;m_B1I_CH[ch].q_p_20 = 0;m_B1I_CH[ch].q_e_20 = 0;m_B1I_CH[ch].q_l_20 = 0;}
}/*******************************************************************************FUNCTION b1i_accum_newdata(unsigned long new_data)RETURNS  None.PARAMETERS  unsigned long new_data		channel new data flagsPURPOSE Grab new accumulation data for each BDS channel.
*******************************************************************************/
void b1i_accum_newdata(unsigned long new_data)
{unsigned short ch, ch_index;// top of correlator block register mapch_index = B1I_CH00_BASE;// Sequentially check each channel for new data. for (ch = 0; ch < B1I_MAX_CHANNELS; ch++) {// if (new_data & (1 << ch))if (new_data & (1 << ch)) {m_B1I_CH[ch].i_p_1 = m_B1I_CH[ch].i_p;m_B1I_CH[ch].q_p_1 = m_B1I_CH[ch].q_p;// The built-in function IORD is used to maintain thread-safe operations. (pjm)
#ifdef ENABLE_32BIT_ACCUMULATORm_B1I_CH[ch].i_e = (signed long)(read_from_correlator( ch_index + I_EARLY ));m_B1I_CH[ch].q_e = (signed long)(read_from_correlator( ch_index + Q_EARLY ));m_B1I_CH[ch].i_p = (signed long)(read_from_correlator( ch_index + I_PROMPT ));m_B1I_CH[ch].q_p = (signed long)(read_from_correlator( ch_index + Q_PROMPT ));m_B1I_CH[ch].i_l = (signed long)(read_from_correlator( ch_index + I_LATE ));m_B1I_CH[ch].q_l = (signed long)(read_from_correlator( ch_index + Q_LATE ));#else // ENABLE_32BIT_ACCUMULATORm_B1I_CH[ch].i_e = (signed short)(read_from_correlator( ch_index + I_EARLY ));m_B1I_CH[ch].q_e = (signed short)(read_from_correlator( ch_index + Q_EARLY ));m_B1I_CH[ch].i_p = (signed short)(read_from_correlator( ch_index + I_PROMPT ));m_B1I_CH[ch].q_p = (signed short)(read_from_correlator( ch_index + Q_PROMPT ));m_B1I_CH[ch].i_l = (signed short)(read_from_correlator( ch_index + I_LATE ));m_B1I_CH[ch].q_l = (signed short)(read_from_correlator( ch_index + Q_LATE ));#endif // ENABLE_32BIT_ACCUMULATOR// If the last dump was the first dump in a new satellite// message data bit, then b1i_lock() sets the load_1ms_epoch_flag// so that we can set the 1m epoch counter here. Why here?// GP4020 Baseband Processor Design Manual, pg 60: "Ideally,// epoch counter accesses should occur following the reading of// the accumulation register at each DUMP." Great, thanks for// the tip, now how 'bout you tell us WHY?!if (m_B1I_CH[ch].load_1ms_epoch_count) {// Load 1 ms epoch counterwrite_to_correlator( ch_index + EPOCH_LOAD, 1 );m_B1I_CH[ch].epoch_codes = 1;m_B1I_CH[ch].load_1ms_epoch_count = 0;}else {m_B1I_CH[ch].epoch_codes = read_from_correlator( ch_index + EPOCH_CHECK ) & 0x1F;}// To sync the 20ms epoch counter (the upper bits) we wait until// we get a signal from the message thread that we just got the// TLM+SOW words.if (m_B1I_CH[ch].sync_20ms_epoch_count) {unsigned long epoch_temp;// 对于D1电文, 我们希望1ms epoch counter在信号失锁之前, 总是保持// 同步的. 当我们获得TLM+SOW字时, 刚好位于当前子帧的第60-bits,// 所以将它余50得10, 再左移5位得0x140.if (IS_D1_NAVMESSAGE(m_B1I_CH[ch].prn)) {epoch_temp = m_B1I_CH[ch].epoch_codes | 0x140;}// 对于D2电文, 1ms epoch counter的起点在位同步时只对齐了D2电文的// 2ms-位, 并没有与20ms(时钟)起点对齐, 此时才有机会完成它.//	1.当我们获得TLM+SOW字时, 刚好获得了当前页的第60-bits, 对应第//  120ms, 为20ms的倍数;//  2.如果对帧同步进行同步处理(在跟踪过程中直接调用sync_frame函数且这//	之后没有丢失累积数据), 则本次处理对应的是设置帧同步参数//  (sync_20ms_epoch_count)后的第1个累积数据, 因此应有://	  (1) 1ms epoch counter = 0;//	  (2) 20ms epoch counter = (sync_20ms_epoch_count % 50) << 5.else {epoch_temp = ((m_B1I_CH[ch].sync_20ms_epoch_count % 50) << 5);m_B1I_CH[ch].epoch_codes = 0;}write_to_correlator( ch_index + EPOCH_LOAD, epoch_temp);m_B1I_CH[ch].sync_20ms_epoch_count = 0;}// lmag approximates sqrt(i^2 + q^2) for long'sm_B1I_CH[ch].e_mag = lmag(m_B1I_CH[ch].i_e, m_B1I_CH[ch].q_e);m_B1I_CH[ch].p_mag = lmag(m_B1I_CH[ch].i_p, m_B1I_CH[ch].q_p);m_B1I_CH[ch].l_mag = lmag(m_B1I_CH[ch].i_l, m_B1I_CH[ch].q_l);}// increment channel index to top of next channel mapch_index += CH_BASE_STEP;}
}/*******************************************************************************FUNCTION b1i_track_channels(unsigned long new_data)RETURNS  None.PARAMETERS  unsigned long new_data		channel new data flagsPURPOSE BDS channel signal acquisition and tracking main routine。
*******************************************************************************/
void b1i_track_channels(unsigned long new_data)
{unsigned short ch;// Finally, in a second (slower) loop, track each channel that dumped. Note// that channels which are CHANNEL_OFF will be allocated satellites to// track in a mainline thread.for (ch = 0; ch < B1I_MAX_CHANNELS; ch++) {// if( (new_data & (1 << ch)) && (m_B1I_CH[ch].state != CHANNEL_OFF))// We already checked for dumped channels above, can  we somehow// avoid checking this again??if ((new_data & (1 << ch)) && (m_B1I_CH[ch].state != CHANNEL_OFF)) { // namuru (PJM)switch (m_B1I_CH[ch].state) {case CHANNEL_ACQUISITION:b1i_acquire( ch);break;case CHANNEL_CONFIRM:b1i_confirm( ch);break;case CHANNEL_FREQ_PULL:b1i_freq_pull( ch);break;case CHANNEL_PULL_IN:b1i_pull_in( ch);break;case CHANNEL_LOCK:if (m_B1I_CH[ch].backto_pull_in) {m_B1I_CH[ch].backto_pull_in = 0;b1i_enter_pull_in(ch);b1i_pull_in( ch);}else {b1i_lock( ch);}break;default:// TODO: assert an error herebreak;}}// If the channel is off, set a flag saying soif (m_B1I_CH[ch].state == CHANNEL_OFF) {g_channels_to_allocate |= (1 << ch);}}
}
  • 我的新浪博客账号
  • 我的存档免费软件
  • 我的存档学习资料

这篇关于18、BDS B1I信号捕获和跟踪实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939559

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组