空间变换器网络的简介+实现

2024-04-27 02:38

本文主要是介绍空间变换器网络的简介+实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

空间变换器网络

是对任何空间变换的差异化关注的概括。空间变换器网络(简称STN)允许神经网
络学习如何在输入图像上执行空间变换, 以增强模型的几何不变性。

例如,它可以裁剪感兴趣的区域,缩放并校正图像的方向。而这可能是一种有用的机制,因为CNN对于旋转和 缩放以及更一
般的仿射变换并不是不变的。

 

空间变换器网络归结为三个主要组成部分:
本地网络(Localisation Network)是常规CNN,其对变换参数进行回归。不会从该数据集中
明确地学习转换,而是网络自动学习增强 全局准确性的空间变换。
网格生成器( Grid Genator)在输入图像中生成与输出图像中的每个像素相对应的坐标网格。
采样器(Sampler)使用变换的参数并将其应用于输入图像

 

更多有关空间变换器网络的内容 :https://arxiv.org/abs/1506.02025

 

STN的最棒的事情之一是能够简单地将其插入任何现有的CNN,而且只需很少的修改

导包

from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
plt.ion() # 交互模式

 

1、加载数据集


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,)),
])train_data = datasets.MNIST(root='.',train=True,download=True,transform= transform)train_loader = torch.utils.data.DataLoader(train_data,batch_size = 64,shuffle = True,num_workers = 4)test_data = datasets.MNIST(root='.',train=False,transform= transform)
# 测试数据集
test_loader = torch.utils.data.DataLoader(test_data,batch_size = 64,shuffle=True,num_workers=4)

2、 定义网络结构


# 定义网络结构
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1,10,kernel_size=5)self.conv2 = nn.Conv2d(10,20, kernel_size=5)self.conv2_drop = nn.Dropout2d()self.fc1 = nn.Linear(320, 50)self.fc2 = nn.Linear(50, 10)# 空间变换器定位 -- 网络self.localization = nn.Sequential(nn.Conv2d(1, 8, kernel_size = 7),nn.MaxPool2d(2, stride =2),nn.ReLU(True),nn.Conv2d(8,10, kernel_size = 5),nn.MaxPool2d(2, stride=2),nn.ReLU(True))# 3*2 affine 矩阵的回归量self.fc_loc = nn.Sequential(nn.Linear(10*3*3, 32),nn.ReLU(True),nn.Linear(32, 3*2))# 使用身份转换初始化权重 / 偏差self.fc_loc[2].weight.data.zero_()self.fc_loc[2].bias.data.copy_(torch.tensor([1,0,0,0,1,0],dtype=torch.float))# 空间变换器网络转发功能def stn(self, x):xs = self.localization(x)#  1--10xs = xs.view(-1, 10*3*3)theta = self.fc_loc(xs) # 90 -- 6theta = theta.view(-1, 2, 3)grid = F.affine_grid(theta, x.size())x = F.grid_sample(x, grid)return xdef forward(self, x):# transform the inputx = self.stn(x)# 执行一般的前进传递x = F.relu(F.max_pool2d(self.conv1(x), 2))x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))x = x.view(-1, 320)x = F.relu(self.fc1(x))x = F.dropout(x, training =self.training)x = self.fc2(x)return F.log_softmax(x, dim=1)

3、定义网络和优化器

model = Net().to(device)
# train model
optimizer = optim.SGD(model.parameters(), lr=0.01)

 

4、训练模型

训练模型 现在我们使用 SGD(随机梯度下降)算法来训练模型。网络正在以有监督的方式学习分
类任务。同时,该模型以端到端的方式自动学习STN。


def train(epoch):model.train()for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = F.nll_loss(output, target)loss.backward()optimizer.step()if batch_idx%500 ==0:print('Train Epoch: {} [{}/{} ({:.0f}%)] \tLoss: {:.6f}'.format(epoch, batch_idx*len(data), len(train_loader.dataset),100. *batch_idx / len(train_loader),loss.item()))

5、测试函数


# 测试函数
def test():with torch.no_grad():model.eval()test_loss = 0correct = 0for data, target in test_loader:data , target = data.to(device), target.to(device)output = model(data)# 累加批量损失test_loss += F.nll_loss(output, target, size_average=False).item()# 获取最大对数概率的索引pred = output.max(1, keepdim = True)[1]correct += pred.eq(target.view_as(pred)).sum().item()test_loss /= len(test_loader.dataset)print('\n Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f} %))\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))

 

6 可视化


# 可视化 STN 结果
def convert_image_np(inp):inp = inp.numpy().transpose((1,2,0))mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224, 0.225])inp = std*inp +meaninp = np.clip(inp, 0, 1)return inp# STN 可视化一批输入图像和相应变换批次def visualize_stn():with torch.no_grad():data = next(iter(test_loader))[0].to(device)input_tensor = data.cpu()transformed_input_tensor = model.stn(data).cpu()in_grid = convert_image_np(torchvision.utils.make_grid(input_tensor))out_grid = convert_image_np(torchvision.utils.make_grid(transformed_input_tensor))# Plot the results side-by_sidef, axarr= plt.subplots(1,2)axarr[0].imshow(in_grid)axarr[0].set_title("Dataset Images")axarr[1].imshow(out_grid)axarr[1].set_title("Transformed Images")

7、训练并显示结果


for epoch in range(1, 20+1):train(epoch)test()plt.ioff()
plt.imshow()

 

完整项目链接:https://github.com/Whq123/Space-transformer-network

这篇关于空间变换器网络的简介+实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939316

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主

SpringBoot实现基于URL和IP的访问频率限制

《SpringBoot实现基于URL和IP的访问频率限制》在现代Web应用中,接口被恶意刷新或暴力请求是一种常见的攻击手段,为了保护系统资源,需要对接口的访问频率进行限制,下面我们就来看看如何使用... 目录1. 引言2. 项目依赖3. 配置 Redis4. 创建拦截器5. 注册拦截器6. 创建控制器8.