空间变换器网络的简介+实现

2024-04-27 02:38

本文主要是介绍空间变换器网络的简介+实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

空间变换器网络

是对任何空间变换的差异化关注的概括。空间变换器网络(简称STN)允许神经网
络学习如何在输入图像上执行空间变换, 以增强模型的几何不变性。

例如,它可以裁剪感兴趣的区域,缩放并校正图像的方向。而这可能是一种有用的机制,因为CNN对于旋转和 缩放以及更一
般的仿射变换并不是不变的。

 

空间变换器网络归结为三个主要组成部分:
本地网络(Localisation Network)是常规CNN,其对变换参数进行回归。不会从该数据集中
明确地学习转换,而是网络自动学习增强 全局准确性的空间变换。
网格生成器( Grid Genator)在输入图像中生成与输出图像中的每个像素相对应的坐标网格。
采样器(Sampler)使用变换的参数并将其应用于输入图像

 

更多有关空间变换器网络的内容 :https://arxiv.org/abs/1506.02025

 

STN的最棒的事情之一是能够简单地将其插入任何现有的CNN,而且只需很少的修改

导包

from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
plt.ion() # 交互模式

 

1、加载数据集


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,)),
])train_data = datasets.MNIST(root='.',train=True,download=True,transform= transform)train_loader = torch.utils.data.DataLoader(train_data,batch_size = 64,shuffle = True,num_workers = 4)test_data = datasets.MNIST(root='.',train=False,transform= transform)
# 测试数据集
test_loader = torch.utils.data.DataLoader(test_data,batch_size = 64,shuffle=True,num_workers=4)

2、 定义网络结构


# 定义网络结构
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1,10,kernel_size=5)self.conv2 = nn.Conv2d(10,20, kernel_size=5)self.conv2_drop = nn.Dropout2d()self.fc1 = nn.Linear(320, 50)self.fc2 = nn.Linear(50, 10)# 空间变换器定位 -- 网络self.localization = nn.Sequential(nn.Conv2d(1, 8, kernel_size = 7),nn.MaxPool2d(2, stride =2),nn.ReLU(True),nn.Conv2d(8,10, kernel_size = 5),nn.MaxPool2d(2, stride=2),nn.ReLU(True))# 3*2 affine 矩阵的回归量self.fc_loc = nn.Sequential(nn.Linear(10*3*3, 32),nn.ReLU(True),nn.Linear(32, 3*2))# 使用身份转换初始化权重 / 偏差self.fc_loc[2].weight.data.zero_()self.fc_loc[2].bias.data.copy_(torch.tensor([1,0,0,0,1,0],dtype=torch.float))# 空间变换器网络转发功能def stn(self, x):xs = self.localization(x)#  1--10xs = xs.view(-1, 10*3*3)theta = self.fc_loc(xs) # 90 -- 6theta = theta.view(-1, 2, 3)grid = F.affine_grid(theta, x.size())x = F.grid_sample(x, grid)return xdef forward(self, x):# transform the inputx = self.stn(x)# 执行一般的前进传递x = F.relu(F.max_pool2d(self.conv1(x), 2))x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))x = x.view(-1, 320)x = F.relu(self.fc1(x))x = F.dropout(x, training =self.training)x = self.fc2(x)return F.log_softmax(x, dim=1)

3、定义网络和优化器

model = Net().to(device)
# train model
optimizer = optim.SGD(model.parameters(), lr=0.01)

 

4、训练模型

训练模型 现在我们使用 SGD(随机梯度下降)算法来训练模型。网络正在以有监督的方式学习分
类任务。同时,该模型以端到端的方式自动学习STN。


def train(epoch):model.train()for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = F.nll_loss(output, target)loss.backward()optimizer.step()if batch_idx%500 ==0:print('Train Epoch: {} [{}/{} ({:.0f}%)] \tLoss: {:.6f}'.format(epoch, batch_idx*len(data), len(train_loader.dataset),100. *batch_idx / len(train_loader),loss.item()))

5、测试函数


# 测试函数
def test():with torch.no_grad():model.eval()test_loss = 0correct = 0for data, target in test_loader:data , target = data.to(device), target.to(device)output = model(data)# 累加批量损失test_loss += F.nll_loss(output, target, size_average=False).item()# 获取最大对数概率的索引pred = output.max(1, keepdim = True)[1]correct += pred.eq(target.view_as(pred)).sum().item()test_loss /= len(test_loader.dataset)print('\n Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f} %))\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))

 

6 可视化


# 可视化 STN 结果
def convert_image_np(inp):inp = inp.numpy().transpose((1,2,0))mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224, 0.225])inp = std*inp +meaninp = np.clip(inp, 0, 1)return inp# STN 可视化一批输入图像和相应变换批次def visualize_stn():with torch.no_grad():data = next(iter(test_loader))[0].to(device)input_tensor = data.cpu()transformed_input_tensor = model.stn(data).cpu()in_grid = convert_image_np(torchvision.utils.make_grid(input_tensor))out_grid = convert_image_np(torchvision.utils.make_grid(transformed_input_tensor))# Plot the results side-by_sidef, axarr= plt.subplots(1,2)axarr[0].imshow(in_grid)axarr[0].set_title("Dataset Images")axarr[1].imshow(out_grid)axarr[1].set_title("Transformed Images")

7、训练并显示结果


for epoch in range(1, 20+1):train(epoch)test()plt.ioff()
plt.imshow()

 

完整项目链接:https://github.com/Whq123/Space-transformer-network

这篇关于空间变换器网络的简介+实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939316

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import